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Abstract

We present experimental results from a broad investigation of intrinsic preferences for infor-

mation. We examine whether people prefer negatively skewed or positively skewed information

structures when they are equally informative, whether people prefer Blackwell more informa-

tive information structures, and how individual preferences over the skewness and the degree

of information relate to one another. The wide scope of our investigation not only reveals new

insights regarding intrinsic preferences for information, but as we show, also allows for testing

of existing models in this domain. We find that models based on the framework of Kreps and

Porteus (1978) and Caplin and Leahy (2001), are the most consistent with the data we observe.
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1 Introduction

Imagine having recently submitted a paper to a top journal. You are attending a conference where

two of your previous mentors, Andy and Jim, are also present. You are considering asking them

about their opinion on the fate of your paper at this journal. Neither can have any influence on

the outcome, and you cannot make any changes to the paper, therefore their views are entirely

non-instrumental at this time. They tend to have equally informative opinions, but differ in how

they communicate them. Jim likes to be pretty certain of a good outcome before he gives you a

thumbs up, whereas Andy gives a thumbs down only if he is quite certain of a bad outcome. Would

you talk to either of your mentors at the conference? If so, which one would you prefer to talk to?

Psychologists have long recognized the desire to regulate anticipatory emotions, such as hope,

anxiety and suspense, regarding an uncertain outcome in the future. Anecdotal evidence suggests

that this desire may lead to a demand for information in the absence of an ability to act on that

information, or to an avoidance of information even when information is useful.1 For example,

hopeful voters park themselves in front of the TV on election night, even though it costs them a

good night’s sleep; and anxious patients with potential symptoms of a disease may put off taking a

diagnostic test, even if it means to delay possible treatments. Consequently, the bulk of the work

trying to understand preference for non-instrumental information in economics have focused on

choices between information sources that vary in their timing of uncertainty resolution.

Importantly, an intrinsic preference for information may also dictate the kind of information

people prefer to obtain. For example, certain information sources eliminate more uncertainty about

the undesired outcome conditional on generating a bad signal, but are unlikely to generate a bad

signal (i.e., they are negatively skewed, such as talking to Andy). Yet others eliminate more

uncertainty about the desired outcome conditional on generating a good signal, but are unlikely

to generate a good signal (i.e., they are positively skewed, such as talking to Jim).2 How do

individuals choose among such sources? Clearly, anticipatory emotions may also play a role in

1Recent empirical work in economics provides evidence for preferences over non-instrumental information. See
Kőszegi (2010), Caplin and Leahy (2004), Mullainathan and Shleifer (2005), Gentzkow and Shapiro (2010), Caplin
and Eliaz (2003), and Oster, Shoulson and Dorsey (2011). There is also a large body of literature in experimental
economics testing attitudes towards non-instrumental information or compound lotteries. This literature, including,
Chew and Ho (1994), Arai (1997), Ahlbrecht and Weber (1997) and Lovallo and Kahneman (2000), Kocher, Krawczyk
and Van Winden (2014), Von Gaudecker et al. (2011), Zimmerman (2013), Falk and Zimmerman (2014), Halevy
(2007), Miao and Zhong (2012), Abdellaoui, Klibanoff and Placido (2015), Abdellaoui, l’Haridon, and Nebout (2015),
Boiney (1993), and Eliaz and Schotter (2010) is discussed in detail in Section 5.

2There has been some modeling of consumers who have a demand for skewed information structures; including
Dillenberger and Segal (2015), Schweizer and Szech (2013) (2013), Caplin and Eliaz (2003), Eliaz and Spiegler (2006),
Eliaz and Schotter (2010), and Mullainathan and Shleifer (2005) (our notion of skewness can also be thought of as a
type of biased information). However, these applications disagree about what kind of skew individuals should prefer.
Boiney (1993) and Eliaz and Schotter (2010) are the only two papers that explicitly test for positive versus negative
skewed preferences.
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these choices. Individuals who would like to preserve hope may prefer sources that lead to more

confident beliefs regarding good outcomes at the expense of greater uncertainty regarding bad

outcomes. For example, Caplin and Eliaz (2003) hypothesize that patients may opt for tests that

are precise in ruling out the disease, but imprecise in ruling it in. On the other hand, individuals who

want to minimize disappointment may instead opt for signals that are more accurate in predicting

the bad outcomes at the expense of greater uncertainty regarding the good outcomes. Clearly,

an understanding of preferences of over non-instrumental information is incomplete without an

investigation of such tradeoffs.

In this paper, we present experimental results from a broad investigation of intrinsic preferences

for information. In particular, we explore i) whether people prefer negatively skewed or positively

skewed information structures when they are equally informative, ii) whether they prefer Blackwell

more informative information structures, and iii) how individual preferences over the skewness and

the degree of information relate to one another. Our experiment has several important features

that address the common challenges in identifying preferences for non-instrumental information.

First, preference election occurs in an environment where the information, by construction, cannot

influence actions. Second, it ensures that the observed preferences are for information that impact

subjects’ beliefs about future outcomes and their belief-utility, and not for information that shapes

their self-perceptions, confidence or ego-utility.3 Third, it greatly reduces information processing

cost of subjects to ensure that preferences reflect utility and not cognitive processing constraints.

Finally, the experiment is designed to elicit preferences for information structures directly, rather

than studying preferences over compound lotteries to make inferences over informational prefer-

ences.

The experimental design is detailed in Section 3. The experiment features one outcome of

interest that has two states ordered in terms of payoffs: winning the lottery, which pays $10, or

losing it, which pays $0. For each participant, the likelihood of winning is 50%. We determine the

list of participants who won the lottery at the beginning of the experiment. Participants observe

the process of determination, but not the outcomes. They know that the lottery outcome is fixed,

and will eventually be revealed at the end of the experiment. During the experiment, participants

are asked to make choices between information structures. All information structures generate one

of two possible signals: good or bad, but they vary in how much and what kind of information

uncertainty they resolve. At the time of choice, participants fully understand the probability with

which each information structure can display a particular signal, and the posteriors they should have

3Please see Hoffman (2011), Eil and Rao (2011), and Mobius et al. (2011) for examples where information
of interest is about the action or characteristics of the subject, and Eliaz and Schotter (2010) for the case where
confidence matters due to agency.
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after observing any given signal. After making their choices, participants see the signal generated

by the information structure of their choice, and sit with the posterior beliefs based on this signal

while working on hypothetical questions of unrelated nature before the winning ticket numbers are

finally revealed.

Our contribution is three-fold. First, our investigation extends the scope of existing research on

preferences over non-instrumental information by pursuing a more comprehensive understanding

of these preferences. Second, exploring a wider range of non-instrumental information preferences

allows us to carefully assess existing models in this domain. Third, in our experimental design, we

utilize a novel and natural domain to test for information preferences by directly eliciting choices

among information structures for a given prior. While there is a theoretical one to one mapping

between compound lotteries and information structures, an empirical equivalence is not obvious.

Directly eliciting preferences over information structures more closely reflects real-life decisions

regarding information acquisition, and as we discuss below, can shed light on future theoretical

work.

We present our experimental results in Section 4. They reveal a strong preference for positive

skew over negative skew; in other words for ruling out more uncertainty about the desired outcome

(and tolerating uncertainty about the undesired outcome) compared to ruling out more uncertainty

about the undesired outcome (and tolerating uncertainty about the desired outcome). In our run-

ning example, these preferences suggest most of our subjects would prefer to talk to Jim. Moreover,

large majority of the subjects prefer Blackwell more informative structures (i.e., earlier resolution

of information), regardless of skew. We also explore relationships between different information

preferences, and consistency across questions. Finally, we present an additional experiment that

tests for robustness across questions, order of presentation and design features. We show that

preferences are robust, individuals are willing to pay for their information structure choices, and

their stated reasons for choosing an information structure map onto different desires to manage

anticipatory emotions.

Many theoretical models of intrinsic preferences for information have similar motivations regard-

ing demand for information. Moreover, most models can accommodate differences in the degree to

which people want to be informed. Therefore, the vast majority of existing evidence, both empirical

and experimental, cannot distinguish between predictions of these models. In Section 5, we derive

a series of new theoretical results that identify the predictions of existing theories in our domain.

We use these results to inform the design of the experiment. Therefore, we can assess the extent

to which different models can accommodate the behavior we observe. Overall, the results provide

the strongest support for the class of preferences introduced by Kreps and Porteus (1978) (which
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in our setting is equivalent to the model of Caplin and Leahy, 2001) and extended by Grant, Kajii

and Polak (1998). While in line with the psychological motives our subjects give, models proposed

by Quiggin (1982), Gul (1991), Dillenberger and Segal (2015), Brunnermeier and Parker (2005),

Kozsegi and Rabin (2009), and Ely, Frankel, Kamenica (2013) fail to capture certain features of the

data. We discuss ways in which some of these models can be modified to capture the behavioral

patterns we observe.

Our experiment and theoretical results also underscore the need for more theoretical work that

directly characterizes preferences over information structures for a fixed prior (along the lines of

Koszegi and Rabin 2009 and Ely, Frankel, Kamenica, 2013). The standard axiomatic approaches

to informational preferences use a recursive methodology formalized by Segal (1990) which requires

individuals to compare across both changing information structures and changing priors; something

that hardly ever occurs in the real world. In contrast, directly eliciting preferences across informa-

tion structures restricts us to focus on behavioral patterns that are observable in the real world.

In addition, it also allows for a simple construction of indifference curves in a space that is very

similar to standard consumption bundle space, thus making the tools and the intuition of standard

microeconomic theory immediately available. We hope that our data provides new insights that

are helpful in developing theoretical models that operate in this domain.

2 Framework

In this section, we outline the preliminaries of the setup and define the information structures we

explore. We also specify important orderings on the set of information structures, which we use in

deriving testable predictions regarding behavior from important classes of models in Section 5.

2.1 Preliminaries

We focus on individuals’ preferences for information where all probabilities are objectively known,

rather than subjective. In order to capture preferences for information, our theory focuses on an

idealized situation where there are three periods (0, 1 and 2). In Period 0, individuals have a

prior probability distribution over states that will be realized and determine payoffs in Period 2.

In Period 1 they receive a signal, which might cause them to update their prior to a posterior.

In Period 2 the states are revealed and individuals receive their payoff. Importantly, individuals

cannot take any actions, thus all preferences for information must come from intrinsic, rather than

instrumental, motivations.

In order to derive predictions applicable to our particular experimental setting, we will focus on
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situations where there are two outcomes, high and low, with utility values u(H), u(L), and so only

two states. In this subsection, we normalize u(L) and u(H) to 0 and 1 respectively. Given the two

outcomes, we denote the prior probability on the high outcome as f . The decision-maker has access

to a set of binary signal structures: the realizations are G (good) or B (bad). A good (bad) signal

is a signal that increases (decreases) the beliefs about the outcome being high compared to the

prior. The information structures in this context are fully characterized as points in [0, 1]2: (p, q),

where probability of good signal conditional on high outcome is p = p(G|H) and probability of bad

signal conditional on low outcome is q = p(B|L). Observing a good signal occurs with probability

fp + (1 − q)(1 − f), and observing a bad signal occurs with probability f(1 − p) + q(1 − f). The

posterior for a high outcome after observing a good signal is

ψG =
fp

fp+ (1− f)(1− q)
.

After observing a bad signal the posterior is

ψB =
f(1− p)

f(1− p) + (1− f)q
.

Formally, within the economics literature, intrinsic information preferences are typically mod-

eled as preferences over two-stage compound lotteries — lotteries over lotteries. There is a natural

bijection between prior-information structure pairs and two-stage compound lotteries. Each signal

induces a lottery in period 1 regarding the outcomes in period 2. In period 0, the individual faces a

lottery over these possible lotteries. Because our focus is on information, we will write preferences,

and utility functionals, over the space of prior-information structure pairs. However, formal results

will use the induced preferences in the space of two-stage compound lotteries in order to provide

an immediate link with prior theoretical work.4

We suppose that individuals have preferences over information structures given the prior f ,

denoted by %f . Among the domain of all possible signal structures represented as points in the

(p, q) space (with the horizontal axis being the p-value), we only consider preferences over those that

lie above the line p+ q = 1 along with the point (.5, .5). We denote this set by S := {(p, q)| p+ q >

1}∪ (.5, .5). This focus is driven by two reasons. First, all points in S have a natural interpretation:

a good signal is good news (a bad signal is bad news). Lemma 1 formalizes this5.

Lemma 1 For any (p, q) ∈ S, observing a good signal increases the posterior on high outcome

relative to the prior, and observing a bad signal decreases the posterior on high outcome relative to

4For an extended discussion of these issues, please see Appendix A.
5All proofs are included in Appendix B.
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the prior.

Moreover, this set of signals is a minimal set that still allows us to capture all possible posterior

distributions, as shown by Lemma 2.

Lemma 2 For any signal structure (p′, q′) ∈ [0, 1] × [0, 1], there exists a (p, q) ∈ S that generates

the same posterior distribution. However, for any T ⊂ S there exists a (p′, q′) ∈ S such that there

is no element of T that generates the same posterior distribution as (p′, q′).

Given this restriction, let us consider some examples of information structures depicted in Figure

1. The information structure denoted by A resolves all information as early as possible, because

a good signal implies that the outcome is high for sure, and a bad signal indicates the outcome

is low for sure (p = q = 1). On the other hand, B is an information structure which conveys

no information at all (p = q = .5), since the posterior after either signal is equal to the prior.

Information structure C (p = q = .76) is another symmetric structure, i.e., on the diagonal, that

resolves some interim uncertainty. As we move from B to A, information structures on the diagonal

resolve more uncertainty, always in equal degrees about the high and the low outcomes. We will

refer to signals along the diagonal p = q as symmetric.

1 1 

(1,.5) 

(.5,1) 

D 

E 

(.9,.3) 

(.3,.9) 

F 

(.5,.5) 

A 

(1,1) 

B 

G 

1 

1 0 

(.76,.76) 

C 

Figure 1: Examples of Information Structures on (p,q) space

Information structures off the diagonal, on the other hand, have the potential to resolve more

uncertainty about one outcome over another. The information structures that are west of the

diagonal, such as those denoted by D and F are positively skewed. For example, a good signal

from information structure F resolves more uncertainty about the high outcome than a bad signal

does about the uncertainty of the low outcome. Relatedly, a good signal from information structure

D means that the outcome is high for sure, but a bad signal does not rule out a high outcome.
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Suppose we fix f = .5. Then, the information structure D provides a 25% chance to resolve all

uncertainty in favor of the better outcome (giving a posterior of 1), while delivering worse-than-

before news 75% of the time (delivering a posterior of 1
3).

Conversely, the information structures that are east of the diagonal, such as those denoted by

E and G, are negatively skewed. For example, a bad signal from information structure G resolves

more uncertainty about the low outcome than a good signal does about the uncertainty of the high

outcome. Similarly, a bad signal from information structure E means that the outcome is low for

sure, but a good signal does not rule out a low outcome. For example, when the prior is .5, E

provides a 25% chance to resolve all uncertainty in favor of the worse outcome (giving a posterior

0), while delivering better-than-before news 75% of the time (and giving a posterior of 2
3).

Note that information structures D and E, and F and G are symmetric across the diagonal,

and thus are pairs of information structures of the form (a, b) and (b, a). For all such information

structure pairs, the expectation of the posterior distribution is the same (by the Law of Iterated

Expectations). Given a fixed prior, the variance of the posterior distributions are the same. But,

they can be ranked in terms of skew. If a ≥ b, the information structure (b, a) has a posterior

distribution with a positive third moment (positively skewed) while (a, b) has a posterior distribution

with a negative third moment (negatively skewed). In order to derive our theoretical predictions, we

will compare positively and negatively skewed structures which are mean and variance preserving

probability transformations of one another, as in Menezes et al. (1980), and use comparisons of

pairs that are reflections of one another across the diagonal.6

2.2 Types of Informational Preferences

With these examples in mind, we now turn to some interesting preferences over information struc-

tures for a fixed prior. We use these preferences as motivation for our experimental design; for

each of the following three types of preferences we have at least one (and often multiple) ques-

tions designed to elicit a choice that will shed light on the direction of that preference for each

subject. Moreover, the direction of and relationships between these preferences, will allow us to

test, non-parametrically, the predictions of widely used models of non-instrumental preferences for

information. We detail this investigation in Section 5.

Preference for earlier versus later: Most of the theoretical models for non-instrumental

information focus on accommodating preferences for early versus late resolution of information in

6In the theoretical literature, there are other other several notions related to preferences for skewness, including
third-order stochastic dominance, third-degree risk order, mean variance preserving probability transformations, the
central third moment and the Dillenberger and Segal (2015) notion of skewness. Given a fixed prior and signal
structures that are reflections of one another across the diagonal, all these different notions of skewness coincide.
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both the decision theory literature (e.g., Kreps and Porteus, 1978; Epstein and Zin, 1989; Grant,

Kajii, and Polak, 1998) and the behavioral literature (e.g., Koszegi and Rabin, 2009 and Koszegi,

2010).

We provide graphical examples of indifference curves where individuals display a strict prefer-

ence for earlier or later resolution in the top row (Panels A-D) of Figure 2. Panel A provides an

example of preferences for later resolution, while Panels B-D demonstrate preferences for earlier

resolution. One can see that these preferences are similar in many ways, except that utility is either

increasing or decreasing as we move northeast in the (p, q) space.

A preference for early or late resolution of uncertainty is tightly linked to the most well-known

ordering of information structures in economics, Blackwell’s ordering. In particular, an informa-

tion structure resolves more uncertainty earlier than another if it is Blackwell more informative.7

Intuitively, the posteriors under the more Blackwell informative information structure are a mean

preserving spread of the posteriors under the less Blackwell informative one. Clearly, this will be

true if p′ > p and q′ > q, thus moving northeast on the diagonal line in Figure 1, we have symmetric

information structures that are increasingly Blackwell more informative. However, Lemma 3 shows

a signal can be Blackwell more informative under less stringent conditions. As a result, lotteries

may be ranked in their informativeness even if all uncertainty is not resolved early (Period 1) or late

(Period 2). Figure 3 illustrates the set of all signals that are Blackwell more and less informative

than the signals (p, q) = (.66, .66) and (p, q) = (.3, .9) respectively, and gives some specific examples

in these sets. We will rely on these observations in our experimental design.

Lemma 3 (p′, q′) Blackwell dominates (is Blackwell more informative than) (p, q) if and only if

p′ ≥ max{ p
1−q (1− q′), 1− q′ 1−pq }.

Preference for one-shot versus gradual: Another ordering over information structures

that is discussed in the literature is a preference for one-shot resolution of uncertainty. Building

on Palacios-Huertas (1999), Dillenberger (2010) provides a characterization of a preference for one-

shot resolution of uncertainty. Dillenberger describes an individual who prefers full early resolution

(p = q = 1) or full late resolution (p = q = .5) over any other information structure, fixing a

prior f . This phenomena is closely linked to the notion of a preference for clumping, introduced

by Kőszegi and Rabin (2009). Relatedly, Ely, Frankel and Kamenica (2013) model preferences for

7Blackwell’s ordering was originally designed to be used in situations where the individual’s payoff in Period 2
depends on both the state and an action taken by individuals in Period 1. However, as Kreps and Porteus (1978)
and Grant, Kajii and Polak (1998) demonstrate, there is a meaningful mapping between Blackwell’s ordering and
information preferences even when information is non-instrumental (i.e., individuals cannot take any action based on
it).

8For the exact parameterization of preferences in each panel, please see Appendix A.
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A B C D

E F G H

Figure 2: Indifference Curves in (p, q) space8

gradual resolution of information, where full early resolution (p = q = 1) or full late resolution

(p = q = .5) are the worst structures.

The lower row (Panels E-H) of Figure 2 demonstrates preferences for one-shot and gradual

resolution of uncertainty. Panel E provides an example of preferences for gradual resolution of

uncertainty, while Panels F-H demonstrate preferences for one-shot resolution of uncertainty. Thus,

in Panel E, the optimal point is in the interior of the panel, while in Panels F-H the utility-

minimizing point is in the interior panel. Preferences for one-shot resolution of uncertainty means

that utility initially declines when moving to the northeast of (.5, .5).

Preference for positive versus negative skewness: The last ordering we want to discuss,

and a novel contribution of this paper, is preferences for skewed information — whether in Period

1, individuals prefer to resolve more uncertainty about the high outcome or the low outcome. A

preference for positive skewed information occurs if the decision maker prefers (b, a) to (a, b), when

a ≥ b.

Figure 2 also demonstrates preferences for skewness. The left two columns (Panels A, B, E, F)

demonstrate preferences that are indifferent to skewness: (a, b) ∼ (b, a). The right two columns

demonstrate preferences for skewness. The third column (Panels C and G) show preferences for

positive skew over negative skew. The fourth column (Panels D and H) show preferences for

negative skew over positive skew. One can see that the primary difference between preferences for

positive or negative skew is the slope of the indifference curves. As we further discuss in Section 5,

10



1	1	

(.5,1)	

B	

1	

1	0	

Blackwell Less 
Informative Set 

Blackwell More 
Informative Set 

(1,.5)	

(.66,.66)	

1	1	

(.3,.9)	

B	

1	

1	0	

Blackwell Less 
Informative Set 

Blackwell More 
Informative Set 

(.55,.55)	

(.76,.76)	

(a) Blackwell ranked signals (b) Blackwell ranked signals
with respect to (.66, .66) with respect to (.3, .9)

Figure 3: Examples of Blackwell more and less informative sets

the existing theoretical models we consider predict both a preference over these “extreme” skewed

information structures as well as same preference for interior cases where information is always

resolved gradually.

3 Experimental Procedures and Design

The experimental design is mainly motivated by testing whether people prefer information struc-

tures that, given equal priors, are more accurate at predicting the worse outcome than those that

are more accurate in predicting the better outcome when information is entirely non-instrumental

(i.e., preferences for skewed information). Another motivation of the design is to test the relation-

ship between preferences over skewness and preferences over the timing of information. Although

existing theories were primarily motivated to explain preferences over the timing of information,

they also make specific predictions regarding preferences over skewness. We derive these predictions

in Section 5 and discuss them in the light of the data. Clearly, the design was motivated by testing

these predictions; however, we delay the particulars of this discussion to Section 5. This section

highlights the important design features. For a more complete description please see Appendix D.

3.1 Protocol

A total of 250 subjects were recruited for a 60 minute study using an online subject management

system designed by the [blinded for review] lab. Subjects received a raffle ticket upon entering the

lab, which gave them a 50% chance of winning $10 in addition to their $7 show-up compensation
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and a 50% chance of winning no additional money. They were told that the winning ticket numbers

would be announced at the end of the study, and that they could choose whether and what kind of

information they received in the middle of the study by making choices among information options.

Subjects were aware that the information would not change whether they actually won the lottery

or not, nor would it help them elsewhere in the experiment. The subjects were also informed that

they would sit with this information until the outcome of the lottery was announced at end of the

experiment. Finally, they learned that in the second half of the experiment they would be answering

hypothetical questions that had no impact on their earnings. After reading these instructions, they

answered comprehension questions that checked their understanding.

Subjects faced a series of five pairwise choices between information structures, knowing that

one of the questions would be chosen at random after they had made all pairwise choices.9 Each

information structure was represented with a pair of boxes from which the computer would draw

a ball according to whether the subject won or lost the lottery. For example, Figure 4 depicts

information structures (1, .5) and (.5, 1) as Option 1 and Option 2, respectively. The subjects

could not see which box the computer was drawing a ball from, but could observe the color of the

ball. The box that the computer would draw from if the subject won the lottery had weakly more

red balls (and so fewer black balls) than the box that the computer would draw from if the subject

lost the lottery, but the composition greatly varied across information structures. Each box had

100 balls. Our theoretical construct p is equivalent to the number of red balls in the box if the

subject won the lottery; q is equivalent to the number of black balls in the box if the subject did

not win the lottery.

Subjects watched an instructional video before each question that presented two such informa-

tion structures, explained the percentage of the instances a red or a black ball would be drawn from

each option, and displayed the posterior probability of winning or losing associated with observing

a red or a black ball from each information structure. In order to minimize information processing

cost of subjects to ensure that preferences reflect utility and not cognitive processing constraints

we chose to display the posteriors after a given signal (and the probability of each signal) promi-

nently. After this instructional video, subjects completed comprehension questions that checked

9Implementation using a random-lottery incentive system is quite common in the literature. However, it has been
criticized (Holt, 1986) as possibly inducing different choices than would be observed if each question was answered
in isolation. Experimental evidence, although mixed, has been generally supportive; Starmer and Sugden (1991) and
Cubitt et al. (1998) are supportive, while Harrison et al. (2013) finds distortions. Such concerns could be magnified
given that we are explicitly modeling individuals who do not reduce compound lotteries. We alleviate such concerns
in two ways. First, we ran a robustness check which involved a single pairwise choice which we discuss in Section
4.2. Our results are qualitatively similar. Second, if preferences satisfy recursivity (an assumption satisfied by most
of the models we consider) random implementation should generate the same pattern of choice as choices made in
isolation.
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Figure 4: Representation of information structures (1, .5) and (.5, 1)

their understanding before proceeding to making their choices. The information presented by the

video was also repeated on the page that described each information structure and asked for their

choice.

After the subjects made choices in all five questions, the computer randomly picked one question

among the five to be carried out for each subject. The program displayed the chosen question,

the subject’s choice of information structure, the color of the ball drawn from it, and repeated

the posterior probability of the subject having won the lottery based on the color of the ball.

Subjects were asked to answer a comprehension question regarding the posterior probability of

having won and several qualitative questions regarding their choice before moving onto the filler task

which asked hypothetical questions that each presented two options to elicit their risk preferences,

ambiguity aversion, ability to reduce compound lotteries and attitude differences towards common

ratios.

Our experimental setup addresses three important challenges in identifying preferences for non-

instrumental information. First, it ensures that information is entirely non-instrumental. We

introduced a considerable delay between the time of information acquisition to the time of uncer-

tainty resolution, while keeping the subjects in a controlled environment to rule out any potential

instrumental use of the information acquired. In other words, subjects could not engage in any

actions in the experiment or elsewhere based on the information about their future earnings. Sec-

ond, it ensures that the observed preferences are for information that impact subjects’ beliefs about

future outcomes and their belief-utility, and not for information that shapes their self-perceptions,

confidence or ego-utility, etc. Third, it reduces information processing cost of subjects to ensure

that preferences reflect utility and not cognitive processing constraints. As a part of the experiment

we explained to subjects the probability they will observe any given signal, and what posteriors they
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should have after observing said signal. Thus, choices we observe are not the result of individuals

incorrectly updating, or being confused by what the information is telling them. By construction,

preferences are elicited in a situation where information must be resolved at some point.10 Thus,

although subjects cannot avoid having their beliefs change, they can control the timing between

shifts in beliefs, and related emotional reactions, due to information revelations.

3.2 Design

There were two between-subject conditions, each presenting five questions. Table 1 details the order

of questions and options presented in Condition 1 and Condition 2. Conditions 1 and 2 varied the

order of the options presented in Q1, Q2, Q5b, and counterbalanced the order in which Q3 and

Q5a were presented, and also asked different Q4a and Q4b.11

Table 1: The order of questions and options in Condition 1 and 2

Condition 1 Condition 2
Option 1 Option 2 Option 1 Option 2 Assignment

Q1 (1, 1) (.5, .5) (.5, .5) (1, 1) all subjects

Q2 (1, .5) (.5, 1) (.5, 1) (1, .5) all subjects

Q3 (.9, .3) (.3, .9) (.6, .9) (.9, .6) all subjects

Q4
(.76, .76) (.3, .9) (.67, .67) (.1, .95) if (1, 1) � (.5, .5)
(.55, .55) (.3, .9) (.66, .66) (.5, 1) if (1, 1) � (.5, .5)

Q5
(.9, .6) (.6, .9) (.9, .3) (.3, .9) random

(.55, .55) (.5, .5) (.5, .5) (.55, .55) random

Q1 elicited preferences regarding full early resolution of uncertainty (indicated by (1,1)) versus

full late resolution of uncertainty (indicated by (.5, .5)). Q2 elicited preferences between (.5, 1)

and (1, .5), a positively skewed structure and a negatively skewed structure. Note that Q2 asked

subjects to compare skewed information structures that may lead to full resolution of uncertainty

given some signal realizations. Q3 and Q5 presented additional comparisons of positively skewed

structures to negatively skewed structures, (.3, .9) versus (.9, .3), or (.6, .9) versus (.9, .6), where

information is always resolved gradually. Half the time, Q5 presented another signal structure that

tested preferences for full late resolution (.5, .5) and another symmetric signal structure that is

slightly more informative (.55, .55). This comparison tested preferences for one-shot versus gradual

10This distinguishes us from environments where it is possible for individuals to avoid learning at all, such as in
Alaoui (2009).

11We did not test richer question order randomization for two reasons. First, the video instructions explaining
each question built on one another. Second, starting with Q1-Q2 made most sense because they were the simplest to
explain. We ran an additional experiment, detailed in the next section, that presented only one question per subject,
partly to address potential concerns regarding order or framing effects.
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resolution of uncertainty.

Across both conditions, different versions of Q4 tested whether the preferences of subjects who

exhibit a preference for Blackwell informativeness over symmetric signal structures also respect that

same Blackwell ordering when comparing positively skewed structures to symmetric structures. If

subjects preferred late resolution, they were asked to choose between a positively skewed signal

to a symmetric signal that was Blackwell less informative than that skewed signal, e.g. (.5, 1) to

(.66, .66). Similarly, if they preferred early resolution, they were asked to choose between a skewed

signal to a symmetric signal that was Blackwell more informative, e.g. (.3, .9) to (.76, .76). We

varied the skewed and symmetric structures across conditions for robustness. The data generated

by Q4 i) helps us better distinguish between models that capture non-instrumental preferences for

information, and ii) allows us to assess to what extent preferences for skewness may interact with

preferences for Blackwell dominance.

Note that we specifically chose to test preferences between pairs of information structures.12

While a theoretical parallel exists between preferences over compound lotteries and over information

structures, we want to directly test for preferences over information structures, because such choices

more closely mirror real-life scenarios of information acquisition. We also focus on a particular prior,

where f = .5, which produces sharper predictions of some of the existing theories in our domain.13

4 Data and Results

Table 2 summarizes choices across the information structures tested by Q1-Q5 and reports p-values

from two-sided binomial tests against the null hypothesis of random choice. For each option, Table

2 also summarizes the preference strength subjects reported, and reports the p-values from two-

sided t-tests that compare the means among subjects with different choices in a given question.

The results patterns are the same across the two conditions, therefore we collapse the data. Tables

7 and 8 in Appendix C report results per condition.

The first set of results presented in Table 2 describes preferences over information structures

that are symmetric, but vary in terms of Blackwell informativeness. These results indicate that

individuals generally prefer full early resolution relative to full late resolution. Moreover, individuals

prefer learning a little bit earlier rather than full late resolution in just as large a proportion.

12Because our domain appears similar to a standard consumption domain, it would be possible to give consumers a
“budget” constraint and have them choose their favorite signal within the budget constraint. We do not do so because
we believe this would make it harder for the subjects to understand the posterior distribution induced by any given
signal and the probabilities with which a given signal is realized. Pairwise choices are less cognitively demanding.

13Many of the commonly used functional forms in the theoretical literature rely on the recursive assumption
formalized by Segal (1990). Recursivity requires individuals to compare across both changing information structures
and changing priors; something that hardly ever occurs in the real world.
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Therefore, the results do not support a general preference for one-shot resolution of uncertainty.

Examining the preference strength data, we see that the relative preference for the option chosen

by the majority of subjects is stronger. For example, subjects who prefer (1, 1) to (.5, .5) reported

an average of 8.31 preference strength for option (1, 1) over the option (.5, .5) on a range from 0

to 10. This preference strength was on average 6.37 for option (.5, .5) over the option (1, 1) among

those who choose (.5, .5).

The second set of results relates to preferences for negatively versus positively skewed informa-

tion structures. We observe that most individuals prefer the positively skewed information struc-

ture relative to the negatively skewed information structure. In fact, the preference for positively

skewed information is almost as prevalent in the population as the preference for early resolution.

In addition, the preference strength for the chosen option is stronger among those who prefer the

positively skewed information structure than among those who prefer the negatively skewed infor-

mation structure. In the data, we also observe considerable consistency in the choice of positively

skewed information. Among the subjects who prefer the positively skewed option (.5, 1) to the neg-

atively skewed option (1, .5), 83% of those who faced only one additional question over positively

and negatively structures also prefer the positively skewed option over the negatively skewed option

presented in the future question. Analyzing the set of subjects who answered three questions that

presented a choice between a positively skewed and a negatively skewed information structures, we

see that 71% of subjects who prefer the positively skewed option (.5, 1) to the negatively skewed

option (1, .5) also prefer the positively skewed option in both of the future questions. This consis-

tency in choice was much higher among those who prefer positive skew. Among the subjects who

faced two questions regarding skewness, of those who prefer (1, .5) to (.5, 1), only 40% prefer the

negatively skewed option over the positively skewed option in the later question. Moreover, among

the subjects who faced three questions regarding skewness, only 18% of the subjects who prefer (1,

.5) to (.5, 1) indicated a persistent preference for the negatively skewed information structure in

the other two questions.

The third set of results presented in Table 2 concerning choices between symmetric and skewed

information options require more interpretation due to the conditional nature of the experimen-

tal design. Recall that individuals only compared (.76, .76) to (.3, .9) (or (.1, .95) to (.67, .67)) if

they previously indicated they preferred full early resolution of information to full late resolution.

Individuals compared (.3, .9) to (.55, .55) (or (.66, .66) to (.5, 1)) if they made the opposite choice

regarding the timing of full resolution of information. Thus, we can interpret these questions as

asking, whether preferences consistently order Blackwell ranked information structures in two situ-

ations: first, when comparing symmetric structures; and second, when comparing positively-skewed
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Table 2: Percentage and Intensity of Choices

N
Choice Percentage Intensity
First p-value First Second p-value

Early vs. Late

(1, 1) vs (.5, .5) 250 78% .000 8.31 6.37 .000
(.55, .55) vs (.5, .5) 121 75% .000 6.08 4.67 .027

Pos. Skewed vs. Neg. Skewed

(.5, 1) vs (1, .5) 250 67% .000 7.23 6.19 .001
(.3, .9) vs (.9, .3) 183 81% .000 6.54 5.79 .099
(.6, .9) vs (.9, .6) 196 74% .000 6.13 5.48 .101

Symmetric vs. Skewed

(.76, .76) vs (.3, .9) 92 71% .000 6.42 6.93 .403
(.3, .9) vs (.55, .55) 27 67% .122 6.11 7.44 .203

(.67, .67) vs (.1, .95) 104 64% .004 6.67 6.24 .453
(.66, .66) vs (.5, 1) 27 56% .701 6.87 5.58 .123

In parentheses we report the p-values from two-sided binomial test to evaluate the null
hypothesis that choice percentages are either larger or smaller than 50%, and p-values
from two-sided t-tests to evaluate the ordering of preference intensity.

structures to symmetric structures. Because most individuals prefer positively-skewed structures,

and because the comparisons are to symmetric structures that are just barely more or less Blackwell

informative, these questions also test whether preferences for skewness can dominate preferences

for Blackwell informativeness.

From the comparisons of (.76, .76) to (.3, .9) and (.1, .95) to (.67, .67), we see that most of

the individuals who exhibit a preference for early resolution over symmetric structures also prefer

Blackwell more informative signals to skewed signals. The test is underpowered for choices between

(.3, .9) vs. (.55, .55) and (.66, .66) vs. (.5, 1) due to small sample size. However, the directional

results suggest that the preferences of individuals who preferred full late to full early resolution

of uncertainty when comparing symmetric information structures may not necessarily respect the

same ordering induced by Blackwell dominance when comparing a positively skewed structure to a

symmetric structure.14 Overall, we conclude that the choices of subjects who prefer early resolution

are consistent with monotonic preferences over information, because they are willing to accept less

14Interestingly, we find that such reversals of preference regarding Blackwell ordering among the individuals who
prefer full late to full early resolution of uncertainty are more likely among those with a weak preference for late
resolution (p − value = .009, logistic regression of conditional Q4 choice on preference strength in Q1). Those who
always prefer less information have rated their preference for full late resolution to be on average 8.8 out of a 10
point scale, whereas those who prefer the more informative skewed signal have rated their preference for full late
resolution to be 6.5 on average. Therefore, it seems that at least some of the individuals who do not seem to have
a consistent preference regarding Blackwell informativeness of signals may have weaker preferences of late resolution
of uncertainty to begin with. Differences in strength of preference do not predict whether individuals who exhibit
a preference for early resolution over symmetric structures also prefer Blackwell more informative signals to skewed
signals, most probably because only a minority of subjects fail to do so.
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positive skew in exchange for greater Blackwell informativeness.

4.1 Relationship between different information preferences

Even previous theoretical work does not consider the relationship between preferences for early

versus late resolution of uncertainty and preferences for skewness, the within-person nature of our

experiment’s design allows us to investigate whether there exists correlation between preferences.

Table 3: Early or Late vs Skewed

Extreme Medium Slight
Pos. Neg. Pos. Neg. Pos. Neg.
(.5,1) (1,.5) (.6,.9) (.9,.6) (.3,.9) (.9,.3)

Early (1,1) 123 73 196 113 41 154 117 28 145
Late (.5,.5) 44 10 54 31 11 42 32 6 38

167 83 250 144 52 196 149 34 183

Table 3 cross-tabulates within-person choice patterns regarding skewness and choice for early

resolution.15 We see that subjects who have a preference for early resolution of uncertainty are

relatively less likely to choose the extremely positively skewed signal, compared to those who

prefer late resolution (p−value= .012, logistic regression of Q1 choice onto Q3 choice). However,

such a relationship does not exist between medium or slight positive skewness and late resolution

preferences. Therefore, the evidence is intriguing, but inconclusive.

Table 4 relates within-person choices of late vs. early and gradual vs. one-shot resolution of

uncertainty. As expected, a preference for (.5, .5) over (.55, .55) is significantly correlated with a

preference for (.5, .5) over (1, 1) (logistic regression, p− value = .001).

We can use our results to try and understand to what extent preferences are “monotone” in

the Blackwell ordering of information. We consider two notions of monotonicity. One is strong

monotonicity. We say a subject obeys strong monotonicity whenever the decision-maker always

chooses the information structure which is Blackwell more informative or Blackwell less informative

(when they are ranked). In contrast, we say a subject obeys weak monotonicity if the decision-

maker chooses the Blackwell more informative signal in both Q1 and in Q4 or the Blackwell less

informative signal in both Q1 and Q4.16 Among the 121 subjects who made choices that allow us

to test both our strong and weak monotonicity conditions, 4 only violate weak monotonicity, 28

only violate strong monotonicity, 2 violate both, and 87 do not violate either.

15A cross tabulation of choices across different questions comparing two skewed information structures is presented
in Appendix C.

16Thus, weak monotonicity is violated if a subject chooses Option 2 in Q4A, or Option 1 in Q4B in condition 1 or
Option 2 in Q4B in condition 2.
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Table 4 provides details of subjects consistency with these conditions. Of the 196 subjects who

prefer (1, 1) to (.5, .5), none violate weak monotonicity. Of the 93 subjects who prefer (1, 1) to (.5,

.5) and had a test of strong monotonicity, 77 satisfy the condition. Subjects who have a preference

for late resolution are more likely to violate both strong and weak monotonicity conditions. Of the

54 subjects who prefer (.5, .5) to (1, 1), 12 violate weak monotonicity, and of the 28 subjects who

prefer (.5, .5) to (1, 1) and had a test of strong monotonicity, half fail. Since subjects are less likely

to have strong preferences for their choice of (.5, .5) over (1, 1), the higher degree of violating our

monotonicity conditions may be driven by the fact that they are close to indifferent regarding the

timing of uncertainty resolution.17

Table 4: Early or Late vs One-shot or Gradual and Monotonicity

Gradual One-shot Weakly Monotone
(.55,.55) (.5,.5) Yes No

Early (1,1) 77 16 93 196 0 196
Late (.5,.5) 14 14 28 42 12 54

91 30 121 238 12 250

4.2 Robustness: Between Subjects Design and WTA Measurement

One plausible concern regarding the design of the experiment is that we did not directly elicit a

willingness to pay for the preferred information structure. We did this to avoid further complicating

an already complex elicitation procedure. A second plausible concern is that in having individuals

make several pairwise choices, we elicited preferences different from what they would express if they

were making a single pairwise choice (despite the fact that only one of the pairwise choices would

be implemented).

In order to ensure our results are robust to these concerns, we ran an additional experiment. The

experiment mirrored the setup of the main study. It featured a lottery that would either pay $10 or

nothing, with a 50 % prior on the high outcome. However, it differed from the main experiment in

three main regards. First, each subject made only a single pairwise choice between two information

structures. Second, we elicited the amount of monetary compensation subjects required in order to

switch their choice from the more to the less preferred information structure, in order to provide a

monetary measure for the strength of their preference. To this end, the experiment also included

a practice round to familiarize the subjects with the willingness to accept elicitation mechanism.

Third, in a post-decision questionnaire, subjects explained the reasons for their choice among the

17Also, subjects who prefer (.5, .5) over (.55, .55) were more likely to violate strong and weak monotonicity
conditions (logistic regressions, p− value = .000 and p− value = .031 respectively).
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two information structures. All experimental details are presented in Appendix E.

The binary comparison of interest presented to each subject was determined by five between-

subject treatments. Treatments A-D repeated the questions presented as Q1, Q2, Q3 and Q5 in

the main experiment. We also included a pairwise comparison not tested by the main experiment:

subjects in treatment E chose between an information structure that provided no additional infor-

mation (i.e., (.5, .5)), and a positively skewed information structure (i.e., (.5, 1)) to test if subjects

preferred skewed information over no information at all. The choice options and their order in each

treatment are listed in Table 5, along with the experimental results.18

Table 5: Robustness Study

N
Choice Percentage Intensity Average MCTS
First p-value First Second p-value First Second p-value

T
re

at
m

en
ts A (1, 1) vs (.5, .5) 38 69% .017 8.19 6.84 .036 26.4 28.8 .350

B (1, .5) vs (.5, 1) 38 19% .000 6.42 7.29 .229 16.5 33.5 .010
C (.3, .9) vs (.9, .3) 38 74% .003 5.50 6.10 .270 18.4 25.1 .118
D (.9, .6) vs (.6, .9) 40 30% .008 5.75 6.86 .072 31.3 25.2 .157
E (.5, .5) vs (.5, .1) 36 14% .000 6.40 8.26 .026 35.3 33.5 .433

In parentheses we report the p-values from one-sided binomial test to evaluate the null hypothesis that choice percentages are either larger or smaller than
50%, and p-values from one-sided t-tests to evaluate the ordering of preference intensity and average MCTS across option 1 and option 2.

The results from the robustness study corroborate our earlier findings. People have a strong

preference for earlier resolution of uncertainty (treatment A) and for positive skew over negative

skew (treatments B, C, and D). Moreover, subjects strongly prefer the positively skewed information

structure over an uninformative one (treatment E). Interestingly, the average preference intensity

reported for each option is very similar to those reported in the main study. We again see that

the option preferred by more of the subjects to be associated with a higher preference intensity

in general. However, the differences are not always significant, possibly due to the smaller sample

size in this study. We find preference strength assessments to be positively associated with the

amount of payment subjects are willing to accept to let go of their choices. In particular, one

point increase in the preference strength on a scale of 0-10 is associated with a 3 cents increase in

the minimum compensation to switch (MCTS) one’s choice from her preferred option to the other

option (β = 2.96, p− value = .000).

We find that subjects are willing to forgo monetary compensation in order to observe a signal

from their preferred information structure, rather than from the alternative. Overall, 90% of the

subjects have non-zero willingness to pay to keep their preferred information structure. In addition,

more than half the subjects reject a payment of 25 cents and a quarter of them reject a payment

18The main experiment had counterbalanced the order of options in Q1, Q2, and Q5. In this experiment, treatment
C changed the order of options in Q3 to provide a robustness check.
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of 50 cents in exchange for seeing a ball from the information structure they did not prefer. The

average MCTS ranges from 18.4 cents to 35.3 cents across different options of choice.19 All of these

average MCTS measures are significantly larger than zero (one-sided t-tests, p-values ¡ .001). As

we can see from Table 5, except in treatment B, there are no significant differences between the

MCTS reported by subjects based on which option they chose.

Some insights into what made subjects prefer certain information structures over others may

be obtained by examining their answers to the post-decision questionnaire. The general message

is that while subjects understand that the information offered to them was non-instrumental, the

subjects who prefer positively skewed information structures have an intrinsic preference to preserve

hope about winning the lottery. For instance, a representative sample of responses includes the

following:

• “While info is essentially the same to me, slightly prefer to keep hope alive, i.e., prefer less

certainty about losing.”

• “I would rather be sure of the good news if/when I receive it.”

• “I would rather have my good news be very good and my bad news be not so bad as opposed

to probably getting good news in option 1 that’s only kind of good.”

On the other hand, subjects who prefer negatively skewed information structures generally

discuss avoiding potential disappointment:

• “I wouldn’t want to be led on by the hope that I won ten dollars. I would rather have a very

strong indication that I didn’t win by getting a black ball so that I wouldn’t have uncertainty

or false excitement.”

• “I’d rather know more surely that I lost if I got a black ball, then deceive myself into keeping

false hope that my black ball actually will yield a positive result.”

• “I would rather be more sure that I lost than be confident that I won because I don’t want

to get my hopes up.”

19Subjects in the experiment indicated whether they would switch their choice for a compensation of 1 cent, 5 cents,
10 cents, 15 cents, 20 cents, 25 cents, 30 cents, 35 cents, 40 cents and 50 cents. We employ the most conservative
measure of MCTS. For example, if the subject rejects a compensation of 10 cents, but accepts a compensation of
15 cents, we set his MCTS to be 10.1 cents. Similarly, if the subject rejects a compensation of 50 cents, we set his
MCTS to be 50.1 cents. Therefore, our measure is a lower-bound on the actual MCTS.
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Thus, it seems that differences across preferences for non-instrumental information indeed maps

onto differential desires to manage anticipatory emotions.20

Overall, the data from the robustness experiment suggest that 1) the choice patterns in the

main experiment are robust to order effects and other biases that may result from a within-person

experimental design, and 2) subjects are willing to pay for their preferred information structures,

even though their choice will not change their expected monetary payoffs.

4.3 Interpretating the Data

There are two concerns that we want to address regarding the interpretation of the data from

these experiments. First, we might be concerned that individuals are so used to having information

be instrumentally valuable that they simply apply the instrumental heuristic in non-instrumental

settings. This would be a good reason why individuals choose more informative over less informative

signals. However, there are many simple instrumental settings where choosing the negatively skewed

information structure gives a higher expected payoff than choosing the positively skewed structure,

and so it is hard to conceive that this preference is purely heuristic in nature.

Second, positively skewed structures, compared to negatively skewed structures, always generate

a higher posterior probability of winning conditional on observing either signal. Thus, one might

be concerned that people are mainly focusing on these posterior probabilities. The real concern is

that this is not a true preference but simply a boundedly rational way of evaluating the signals.

However, our data shows that individuals do not simply want to maximize the posterior probability

of winning, conditional on observing a signal. We find that individuals prefer Blackwell more

informative symmetric signals to positively skewed signals. The former have the same posterior

probability of winning conditional on a red ball, but a lower posterior probability of winning

conditional on a black ball. In addition, the answers in the post-experiment questionnaire also

support the idea that the data reflect preferences, rather than a misguided focus on the posterior

probability of winning conditional on observing either signal.

5 Discussion

Our data indicates three main patterns:

• Individuals consistently prefer Blackwell more informative structures. For a given (uncondi-

20When discussing whether they prefer full early or full late resolution, subjects give motivations such as “I would
rather know now rather than dwell over it for the next 20 minutes,” or “I feel like Option 1 would cause unnecessary
stress in the middle of the study.”
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tional) pairwise choice over symmetric structures, between 69% and 78% percent of subjects

prefer the Blackwell more informative structure.

• Individuals consistently prefer positively skewed structures. For any single pairwise com-

parison, we find that between 67% and 81% of subjects prefer the positively skewed to the

negatively skewed information structure.

• Individuals prefer symmetric Blackwell more informative structures over those that are Black-

well less informative, but more positively skewed. Between 64% and 71% of subjects are

willing to accept less positive skew in exchange for greater Blackwell informativeness.

Moreover, individuals also consistently exhibit these preferences across questions. Recall that

of subjects who face three (two) questions regarding skewness, 71% (83%) of those who choose the

extreme positively skewed structure over the extreme negatively skewed structure always choose

the positively skewed option in the future. Similarly, of the 196 individuals who face two questions

that tested for preferences over Blackwell ranked signals and initially choose (1, 1) over (.5, .5),

all of them also choose the Blackwell more informative signal in the second question. Of the 93

subjects who face three questions that tested for preferences over Blackwell ranked signals and

initially choose (1, 1) over (.5, .5), 77 of them choose the Blackwell more informative signal in both

subsequent questions.

5.1 Relating Theory to Data

The anticipatory motivations provided by our subjects reflect the intuitions provided in much of

the theoretical literature. Such a parallel naturally raises the following question: To what extent

do existing theoretical models that rely on these same motivations capture the stylized patterns we

observe in choice?

There are a variety of theoretical models that predict preferences over information structures. In

this section we link functional forms used to capture non-instrumental preferences for information

to observable patterns of choice, which we then compare to our data. This allows us to use our data

to test a variety of assumptions and functions used in the literature. Our data, and the linkage we

provide to theory, also allows us to reflect on the intuitive psychological motivations for why we

observe the patterns we do.

We first discuss the general conditions that preferences should satisfy in order to be consistent

with the three main patterns previously mentioned at the beginning of the Section. We then relate

these patterns to particular functional forms used in the literature.
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In testing existing theory, we primarily work with the functional forms used to try to capture

intrinsic preferences for information. We do so because some of the models we consider have no

formal axiomatic basis, and so the axioms themselves cannot be directly tested in our framework.

By way of analogy, most of these models have no known “Independence”-like axiom we can test

regarding skewness. Moreover, verifying the properties of the local utility functions for a given

preference can be quite difficult. We will not describe the models themselves in detail in this

section. The interested reader can see Appendix A for a more detailed description of the formal

set-up and models we utilize and Appendix B for the proofs of the predictions.

Theoretical Predictions

Traditional economic theory assumes that individuals do not have non-instrumental preferences

over information; Segal (1990) describes these individuals as satisfying an axiom called Reduction

of Compound Lotteries. When re-framed in our domain, information structures with a fixed prior,

this axiom simply says that an individual should not care about what information structure they

face, i.e., (p, q) ∼f (p′, q′).

Prediction 1 Fixing f , if a decision maker satisfies Reduction of Compound Lotteries then they

should be indifferent between all information structures.

Of course, it is easy to imagine that individuals are not indifferent between all information

structures even when information has no instrumental value. Thus, the literature has considered

various weakenings of the Reduction of Compound Lotteries assumption. One assumption, intro-

duced by Segal (1990), is that rather than being indifferent between all lotteries that have the same

reduced form probabilities over final outcomes, individuals are only indifferent between full early

resolving lotteries (i.e., p = q = 1) and full late resolving lotteries (i.e., p = q = .5) that have same

reduced form probabilities over final outcomes (i.e., the same f). Segal describes these individuals

as satisfying the Time Neutrality axiom.

Prediction 2 Fixing f , if a decision-maker satisfies Time Neutrality they should be indifferent

between (1, 1) and (.5, .5).

Because Time Neutrality imposes a type of stationarity on preferences, they have been widely

used in the literature, such as Dillenberger (2010). In contrast, a large number of papers, beginning

with Kreps and Porteus (1978), have discussed the importance of a preferences that do not satisfy

Time Neutrality. In particular, they focus on individuals who have a preference for earlier (later)

resolution of uncertainty. This means that given two lotteries which generate the same reduced
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form probability distribution, individuals always prefer a compound lottery which is more (less)

Blackwell informative in the first stage. Grant, Kajii and Polak (1998) show that given mild

differentiability assumptions on the utility function V that represents the preferences, a preference

for more (less) Blackwell informative signals is equivalent to the local utility function of V being

convex (concave).21

Prediction 3 Let %f be represented by V , where V is Gateaux differentiable. Then the local utility

function of V is everywhere convex (concave) if and only if the decision-maker prefers Blackwell

more (less) information structures.

Intuitively, more information earlier means that the two-stage compound lottery undergoes a

mean-preserving spread in the second-stage (posterior) lotteries. Convexity of V implies that a

decision-maker likes this increase in spread.22

Regardless of the individual’s preference for information, what determines an individual’s pref-

erence obtaining signals from positively or negatively skewed information structures? We know

that an individual prefers positively skewed lotteries if the derivative of the local utility function is

convex. As Prediction 4 demonstrates, this intuition naturally maps into compound lotteries, and

thus information structures.23

Prediction 4 Let %.5 be represented by V , where V is Gateaux differentiable. If the local util-

ity function of V is thrice differentiable and has a convex (concave) derivative everywhere, then

(x, y) %.5 (-.5)(y, x) whenever x ≤ y.

The predictions discussed up until now rely on very general conditions. We can extend these

insights and use the data to directly test specific functional forms that have been used in the

literature.

We first turn to a class of preferences, “recursive preferences,” first formalized by Segal (1990).

In this class, decision-makers evaluate situations with information revelation using a folding-back

procedure by using two functionals V1 and V2, which represent the utility at Period 1 and 2,

respectively. Although recursivity provides a useful structure on utility, it cannot be directly tested

in a setting where individuals make choices over information structures. Recursivity is only testable

21Recall that convexity and concavity, as well as the local utility functions, used in both this and the following
proposition, are defined in the space of two-stage compound lotteries induced by the prior-information structure pair.

22Machina (1982) shows that under mild smoothness conditions one can use local utility functions whenever V is
not expected utility to do the same type of analysis that is possible for expected utility preference.

23Our requirement on the differentiability of the utility functional and the local utility functions is stronger than
it actually needs to be in Prediction 3 and Prediction 4. Using the techniques of Cerreia-Vioglio, Maccheroni and
Marinacci (2014) we can relax the differentiability assumptions.
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by changing the prior belief of individuals. Thus, we must test recursivity in conjunction with other

assumptions about the structure of the preferences.

We consider the predictions of models that specifically assume recursivity and can address

preferences for skewness.24 The first model to implicitly use recursive preferences to address non-

instrumental preference for information was introduced by Kreps and Porteus (1978). Another

influential model, Caplin and Leahy (2001), nests Kreps and Porteus’ specification in our framework.

They assume both V1 and V2 have expected utility representations. Given their specification, we

now provide a stronger version of Predictions 3 and 4.

Prediction 5 Suppose preferences have a recursive representation (V1, V2) such that V1 and V2

have expected utility representations with Bernoulli utilities u1 and u2. Then u1 ◦ u−1
2 is convex

(concave) if and only if the decision-maker prefers Blackwell more (less) information structures.

Moreover, if the derivative of u1 ◦ u−1
2 is convex (concave), then (x, y) %.5 (-.5)(y, x) whenever

x ≤ y.

In Figure 2, Panels A-D exhibit preferences that are within the Kreps-Porteus class. Panel A

demonstrates preferences that prefer later resolution and are indifferent to skewness. Panel B-D

demonstrates preferences that prefer earlier resolution. Panel B has preferences that are indifferent

to skewness. Panels C and D show preferences for positive and negative skew respectively.

There are also other models assuming recursivity, used in a variety of applications, which

make other particular functional form assumptions. Two well-known classes of models used in

dynamic applications are the recursive extensions of Gul’s (1991) model of disappointment aversion

and rank dependent utility. Both of these models can accommodate a preference for positively

skewed information or for negatively skewed information. However, they also generate additional

predictions regarding behavior that can separate them from the basic Kreps-Porteus model. Our

next prediction is one such behavior; it states that if an individual’s preferences fall within either

of these classes and are consistent with the empirical evidence on the Allais paradox and first-order

risk aversion, then they must exhibit local preference for late resolution.

Prediction 6 Suppose preferences have a recursive representation (V1, V2) such that V1 and V2

are both in Gul’s class of disappointment aversion functionals (or rank-dependent utility) and the

decision-maker is disappointment averse (has a strictly convex weighting function). Then there

exists an 0 < ε′ such that for all ε < ε′, (.5, .5) �.5 (.5 + ε, .5 + ε).

24Eliaz and Spiegler (2006) discuss an impossibility result related to preferences for skewness. However, their exact
results rely on existential quantifiers that are impossible to violate and calibrate.
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Panels G and H of Figure 2 demonstrate graphically dynamic Disappointment Aversion and

Rank-Dependent preferences respectively. In the graphic example, the Dynamic Disappointment

Aversion preferences exhibit a preference for positive skew, while the dynamic Rank-Dependent

preferences exhibit a preferences for negative skew.

One paper directly addressing preferences for skewed information is Dillenberger and Segal

(2015). They provide sufficient conditions such that, fixing a prior, if an individual prefers full late

resolution (.5, .5) over all more informative structures, (p, q) where p ≥ .5 and q ≥ .5, then they

must also prefer (.5, .5) over all negatively skewed structures. However, these individuals prefer

some positively skewed structures over (.5, .5). We refer the interested reader to their paper for a

full description of the conditions.25

Prediction 7 Suppose preferences belong to the class defined by Dillenberger and Segal (2015).

Then, (.5, .5) %.5 (x, x) for all x ≥ .5, implies that for all x ≤ y, (.5, .5) %.5 (y, x). However, it is

possible that (.5, .5) -.5 (x, y).

We also want to consider three important models of preferences which do not satisfy recursivity,

but which are used in many applications to generate preferences over information. Brunnermeier

and Parker (2005) introduce a well-known model of optimal expectations. In their model, individ-

uals trade off having (distorted) optimistic beliefs today with possibly taking incorrect actions in

the future based on those incorrect beliefs. Of course, in our environment there are no actions to

take, so individuals should be indifferent between all structures. We refer to their functional form

as BP.

Prediction 8 Suppose preferences represented by a BP functional form. Then the decision-maker

should be indifferent between all information structures.

A second, important class of non-recursive preferences are those of Kőszegi and Rabin (2009).

We refer to their functional form as KR. These preferences, although flexible enough to capture

preferences for early versus late resolution of information and a preference for clumping, have strong

predictions regarding preferences for skewness. This is because their functional form imbeds strong

symmetry assumptions regarding the payoffs over beliefs.

The non-recursive preferences using in Ely, Frankel, and Kamenica (2013), referred to here

as EFK, also imbed similar intuitions. Although EFK originally designed their model to explain

preferences for gradual resolution of information in contexts such as sporting events, their functional

25Note that Dillenberger and Segal (2015) provide a different definition of skewness. In our particular domain,
their definition, as well as all other notions of skewness, coincide because of the binary nature of the outcome and
priors being equal to 50%.
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form is flexible enough to be applied to other settings and can generate other patterns of behavior

(including behavior very similar to KR). They have two functional forms. One they describe

a capturing surprise, the other suspense; both have strong symmetry assumptions regarding how

beliefs effect payoffs. Thus, we obtain the same prediction as in Kőszegi and Rabin (2009) regarding

preferences for positive versus negative skew.

Moreover, we also demonstrate that under the standard assumption of loss aversion KR prefer-

ences generate a similar preference for local one-shot resolution of uncertainty in the neighborhood

of (.5, .5) to that seen in Prediction 6. Moreover, we also provide conditions for when EFK’s models

generate a preference for local one-shot resolution of uncertainty in the neighborhood of (.5, .5).

Prediction 9 Suppose preferences represented by a KR or EFK functional form. Then (x, y) ∼.5
(y, x). Moreover, if preferences are represented by a KR functional form that is loss averse, or

an EFK suspense functional form with a sufficiently convex surprise function, or an EFK surprise

functional form with a decreasing surprise function, then there exists an 0 < ε′ such that for all

ε < ε′, (.5, .5) �.5 (.5 + ε, .5 + ε).

Panels E and F of Figure 2 graphically demonstrate preferences within the KR and EFK classes

respectively.

Evaluation of Theoretical Predictions

Our design allows us to directly relate the theoretical predictions to the questions. Prediction

1 can be tested by all questions, as it says that the decision-maker should always be indifferent.

Prediction 2 is specifically tested in Q1. The data is clearly inconsistent with Predictions 1 and 2

since individuals exhibit strong preferences over information structures in general and between (.5,

.5) and (1, 1) in particular.

However, Predictions 3 and 4 suggest that there exist utility functions that could accommodate

our data. In particular, Prediction 3 demonstrates that if the utility function V has convex local

utility functions, then it will possess a preference for Blackwell more informative signals. Our ex-

periment elicits preferences for symmetric information structures that vary in their informativeness

in Q1, Q4 and the second possible Q5 question. From Prediction 3, we know our data regarding

preference for early resolution are consistent with a convex V . Moreover, if V has convex deriva-

tives of the local utility functions, Prediction 4 demonstrates that it will possess a preference for

positively skewed signals. Prediction 4 is tested by looking at preferences for skewness, i.e., Q2, Q3

and the first possible Q5 question. Using Prediction 4, we know that our observed choices regarding
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skewness are consistent with a positive third derivative of V .26

We can now turn directly to evaluating the predictions of specific functional forms proposed

by previous literature. Prediction 5 is tested by looking at both preferences for skewness, i.e., Q2,

Q3 and the first possible Q5 question, as well as preferences for earlier or later resolution, which is

tested in Q1, Q4 and the second possible Q5 question. Prediction 6 is tested by the second possible

Q5 question. Prediction 7 is tested by Q1 and the second part of Q5. Like Prediction 1, Prediction

8 is tested by all questions. The first part of Prediction 9 is tested by Q2, Q3, and the first part of

Q5, and the second part of Prediction 9 by the second part of Q5.

Because individuals exhibit preferences over different information structures with the same

prior, they violate the predictions of Prediction 8. According to the model of Brunnermeier and

Parker, our subjects should simply distort their beliefs to believe the best possible thing about the

future. In essence, individuals need to experience a cost of holding certain beliefs that is intrinsic,

rather than arising from distorted actions.

In line with this, in the models of KR and EFK, individuals experience gains and losses from

changing beliefs. Prediction 9 tells us that if preferences are in either class, then for f = .5

individuals should be indifferent between (p, q) and (q, p). In fact, at both aggregate and individual

levels we do not find such an indifference — people prefer the positively skewed structure.27 The

issue is that these models do not feature a consistently convex derivative of the local utility functions.

More intuitively, these models build in a great deal of symmetry regarding the effect of changes in

beliefs; a change in a very high belief causes the same utility effect as an equivalent sized change in

a very low belief. Given a prior of .5, this implies that individuals will be indifferent between our

positively and negatively skewed signal structures. If this symmetry assumption is relaxed so that

changes in high beliefs matter differently than changes in low beliefs, these models may be able to

capture the behavioral patterns presented by our data.

A variety of models have the possibility of predicting preferences for skewed information, even

when f = .5. These include Gul’s model of Disappointment Aversion and Rank Dependent Utility.

However, Prediction 6 indicates that those preferences should also prefer (.5, .5) to (p + ε, q + ε)

for a ε close enough to .5. We find no evidence for this type of preference for clumping.28 Our

26Recall that we find that individuals tend to have strongly monotone preferences; they always choose the Blackwell
more informative signals. However, this does not mean that preferences are lexicographic. As an example, imagine
preferences are increasing in the second moment and the third moment of the posterior distribution. For example,
if we compare (.3, .9) to (.76, .76), it is the case the (.76, .76) is “just barely” more Blackwell informative than
(.3, .9). However, (.76, .76) has a much larger second moment than (.3, .9), as well as a smaller third moment. Thus,
preferences can be continuous in the tradeoff between the second and third moment.

27We also find that the part of Proposition 9 which predicts a local preference for one-shot resolution of uncertainty
is not consistent with our data.

28One potential objection is that perhaps we did not set ε close enough to 0. In fact, simple calibrations show
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data also fails to be consistent with the approach of Dillenberger and Segal (2015) for the same

reason. Prediction 7 requires that individuals prefer (.5, .5) to any other more informative symmetric

signal. We find that this is not the case, as most individuals prefer (.55, .55) to (.5, .5). Thus, these

models, although able to accommodate a preference for skewness, fail at predicting the ranking of

“late resolution”, i.e., (.5, .5) to earlier resolution structures, such as (.55, .55) and (1, 1).

In contrast, our data is generally consistent with the traditional model of Kreps and Por-

teus (1978). This model allows for preferences to have a convex local utility function and a

convex derivative of the local utility function. In order to provide more context for these re-

sults, consider the Epstein and Zin (1989) parameterization of the Kreps-Porteus model. Then

V1(l) =
∑

x∈l u1(x)l(x) =
∑

x∈l x
ρl(x) while V2(l) =

∑
x∈l u2(x)l(x) =

∑
x∈l x

αl(x). In this case,

the local utility function is convex if and only if u1(u−1
2 (x)) is convex — or x

ρ
α is convex, which

is the same as ρ ≥ α. Similarly, the derivative of the local utility function is convex if and only if

the derivative of u1(u−1
2 (x)) is convex. Given ρ ≥ α, this condition is equivalent to ρ ≥ 2α. Thus,

individuals must have a strong preference for early resolution. Figure 2 Panel C demonstrates in-

difference curves of preferences that satisfy such conditions, given the Epstein-Zin parameterization

of the Kreps-Porteus model.

We can relate our restrictions to the larger literature estimating Kreps-Porteus and Epstein-Zin

preferences. Epstein-Zin preferences are used widely in macroeconomics and have been estimated

from a variety of data. Thus, we can compare the restrictions implied by our data to the estimates

obtained from an entirely different domain. In fact, recent estimates are consistent with the re-

strictions our observed preferences for skewness place on the data (i.e., the convexity of the first

derivative of u1(u−1
2 )). For example, Brown and Kim (2013) and Binsbergen et al. (2012) find that

ρ ≥ 2α (much greater in fact).

5.2 Related Experimental Literature

In addition to the theoretical literature reviewed in the previous subsection, we also want to carefully

relate our results to the existing experimental literature examining preferences over information

structures as well as preferences over compound lotteries. We discuss the literature for compound

lotteries separately; although preferences over compound lotteries and information structures are

theoretically linked, the framing is quite different across the two domains. Therefore, we want to

be careful to discuss the results separately.

the power of our test, where ε = .05. Suppose preferences in V1 and V2 both have a disappointment aversion
representations (ui, βi). Moreover, suppose, as is plausible for small stakes, the ui is linear. In this case, if an
individual prefers (.55, .55) over (.5, .5), then for any plausible value of β2 (i.e., 0 ≥ β2 ≤ 100), β1 must be less than
.01, or in other words, people must be ‘almost’ expected utility over gambles that resolve now.
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Preferences for skewed information: There has been very little empirical investigation of

preferences for skewness in non-instrumental information. Boiney (1993) finds a preference for posi-

tively skewed compound lotteries. Although he describes these compound lotteries as “ambiguous,”

they could also be interpreted as “objective.” Importantly, the experiment differs from ours in two

crucial ways: 1) the subjects are not incentivized, and 2) the information could be interpreted to

have instrumental value. More recently, Eliaz and Schotter (2010) (ES) investigate preferences for

skewness within a broader investigation of demand for non-instrumental information for confidence

utility. They investigate a very different driver of information demand. While we focus on the de-

mand for non-instrumental information to manage belief utility induced by anticipatory emotions

in the absence of any choice or agency regarding the future outcome, they focus on the intrinsic

demand for information to manage confidence utility induced by facing a choice in the absence of

any anticipatory emotions.

In particular, Eliaz and Schotter (2010) employ a two-stage compound lottery context with two

actions, but where one action dominates the other in all states of the world. They provide subjects

with the opportunity to obtain information about the degree to which the dominating action is

superior before they make a choice. Even though information should not affect the subjects’

ultimate choice, many of the subjects demonstrate a positive willingness to pay for this information

before they make the (obvious) choice. The authors argue that this demand is driven by a desire

to feel more confident about choosing the dominating option. The Treatment 4 of this experiment

tests preferences over skew and shows that individuals prefer a negatively skewed signal over one

that is positively skewed.

Compared to our protocol, the ES experiment introduces the need to make a choice between two

uncertain options, thereby evoking the need to bolster confidence. Our experiment purposefully

eliminates any self-relevant utility, such as ego-utility or confidence-utility, by providing a context

that is free of choice, agency or other perceptions of control regarding the outcome. Moreover, the

ES experiment does not feature a delay between the receipt of information and the full resolution

of information, reducing the role of anticipatory emotions and belief utility.

Preferences for early versus late resolution: The theoretical literature on early and late

resolution (beginning with Kreps and Porteus, 1978) has spawned a great deal of empirical tests.

Although the literature has found general support for early resolution of uncertainty, there is also

substantial heterogeneity within the subject population of a given study, and across studies, which

may be due to different framing effects.

Using the Epstein-Zin parameterization of the Kreps-Porteus model, macroeconomists infer
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attitudes towards the timing of information using estimates of risk preferences and inter-temporal

elasticity. The data in the early investigations provided by Epstein and Zin (1991) indicate a

preference for late resolution of uncertainty. However, more recent papers, such as Binsbergen et

al. (2012) have found a strong preference for early resolution of uncertainty.

Direct tests of preferences over information structures, such as Chew and Ho (1994), Arai

(1997), Ahlbrecht and Weber (1997), Lovallo and Kahneman (2000) and Brown and Kim (2013)

generally find a preference for early rather than late resolution of information.29 Other studies have

emphasized the heterogeneity among subjects; Kocher, Krawczyk and Van Winden (2014) find a

substantial fraction of subjects prefer delayed resolution. Moreover, Von Gaudecker et al. (2011),

find that their median subject is essentially indifferent between early and late resolution.

Studies have also found various factors can influence preferences for early versus late resolution.

Lovallo and Kahneman (2000) find that moving from gains to losses strengthens the preference

for early resolution of uncertainty; and, at least in the domain of gains, a negatively skewed prior

(which is quite distinct from a skewed information structure) induces a greater interest in speeding

up resolution for gains compared to positively skewed gambles. Ganguly and Tasoff (2014) find

that individuals’ demand for earlier information increases in the size of the gain they are facing.

Similarly, larger losses lead to a preference for delaying information.

Delaying (or speeding up) the resolution of uncertainty can also affect the risk preferences of

players, and may be related to their informational preferences. In a real-stakes investment task,

van Winden, Krawczykb, Hopfensitz (2011) find that subjects invest more in a risky investment if

resolution is sooner. Erev and Haruvy (2010) find that subjects value a delayed chance at winning

a prize more than an immediate chance.

Preferences for one-shot versus gradual resolution: Similar to the results on skewness,

there is only a small, and somewhat contradictory, set of results regarding preferences for gradual

versus one-shot resolution.

Using incentivized choices, although allowing for the possibility of instrumental value of in-

formation, Zimmerman (2014) finds no evidence that subjects are averse to gradual resolution of

information in the gain domain. Our results corroborate this finding. On the other hand, when

outcomes are in the loss domain (in their case losses are due to electric shocks), Falk and Zimmer-

man (2014) do find a preference for one-shot resolution. Moreover, Bellemare, Krause, Kroger, and

Zhang (2005) demonstrate that if individuals receive information more often about their risky in-

vestment, they tend to invest less in that option and favor a safe investment where such information

29One caveat is that many of these studies either ask hypothetical questions or examine demand for information
in contexts where information may be instrumentally valuable.
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is essentially eliminated.

Preferences over compound lotteries: Some experiments consider choice over compound

lotteries, rather than information structures. Halevy (2007), Abdellaoui, Klibanoff and Placido

(2013), and Abdellaoui, l’Haridon, and Nebout (2015) all find that the subjects tend to prefer

one-shot lotteries to compound lotteries (i.e., those that feature gradual resolution of uncertainty),

although Abdellaoui, l’Haridon, and Nebout (2015) find that subjects (on average) prefer a posi-

tively skewed lottery to one that features one-shot resolution.

However, it isn’t clear whether subjects view a one-stage lottery as an early resolving lottery

or a late resolving lottery, therefore making it difficult to fit these results into the information

framework. Miao and Zhong (2012) explicitly address this concern, and find, in contrast to the

literature on information, that individuals prefer compound lottery structures that feature full

late resolution to most other compound lottery structures — even to those that induce full early

resolution.

6 Conclusion

We present results from an experiment that provides a broad investigation of intrinsic preferences for

information. Our results provide some new insights. Individuals overwhelmingly prefer information

structures that are positively skewed information structures. Such information structures have the

potential to resolve more uncertainty regarding the desired outcome than the undesired outcome,

in exchange for generating bad signals more frequently. Interestingly, individuals exhibit these

preferences alongside a strong desire to obtain non-instrumental information overall. In fact, their

preferences seem to be monotonic regarding the ordering induced by Blackwell informativeness,

even ruling out preferences for clumped information.

We believe that these results are relevant for the design of information provision in domains

where intrinsic preference for information lead to large welfare effects, such as in medical testing

and financial markets. Our results both provide novel insights into information preferences in the

real-world and also point to new avenues for exploration. Events that induce strong anticipatory

emotions, such as the possibility of a serious disease, often involve either rare outcomes or losses

relative to the status quo. Future research that examines whether preferences for non-instrumental

information vary with initial expectations, and/or with different valuations of potential outcomes

would also be helpful in designing context-sensitive policies.

Our experimental investigations allow us to demonstrate how observed preferences for skewed

information (as well as other types of information) can shed light on existing models. We provide
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some conclusions showing what types of theories are consistent or inconsistent with our data. In

particular, we hope our results can help researchers modify existing theory and guide the develop-

ment of new models.

34



References

[1] Mohammed Abdellaoui, Peter Klibanoff, and Lætitia Placido. Experiments on compound risk
in relation to simple risk and to ambiguity. Management Science, 2013.

[2] Mohammed Abdellaoui, Olivier l’Haridon, and Antoine Nebout. Probability weighting in
recursive evaluation of two-stage prospects. Technical report, Working Paper, 2015.

[3] Martin Ahlbrecht and Martin Weber. Preference for gradual resolution of uncertainty. Theory
and Decision, 43(2):167–185, 1997.

[4] Larbi Alaoui. The value of useless information. 2009.

[5] Dariush Arai. Temporal resolution of uncertainty in risky choices. Acta psychologica, 96(1):15–
26, 1997.

[6] Charles Bellemare, Michaela Krause, Sabine Kröger, and Chendi Zhang. Myopic loss aversion:
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Appendix A: Formal Definitions

We will provide formal definitions for the theoretical discussion in the paper. We first discuss the
environment, then axiomatic characterizations of preferences, then particular functional forms of
preferences. In order to link our discussion more closely to the existing literature, this Appendix
will work with a domain of two-stage compound lotteries, the set of which are equivalent to the set
of prior, information structure pairs, the domain used in the body of the paper.

Formally, consider an interval [w, b] = X ⊂ R of money. Let ∆X be the set of all simple lotteries
on X. A lottery F ∈ ∆X is a function from X to [0, 1] such that

∑
x∈X F (x) = 1 and the number of

prizes with non-zero support is finite. F (x) represents the probability assigned to the outcome x in
lottery F . For any lotteries F,G we let αF + (1−α)G be the lottery that yields x with probability
αF (x) + (1− α)G(x). Denote by δx the degenerate lottery that yields x with probability 1. Next,
denote ∆(∆X) as the set of simple lotteries over ∆X . For P,Q ∈ ∆(∆X) denote R = αP +(1−α)Q
as the lottery that yields simple (one-stage) lottery F with probability αP (F )+(1−α)Q(F ). Denote
by DF the degenerate, in the first stage, compound lottery that yields F with certainty. % is a weak
order over ∆(∆X) which represents the decision-maker’s preferences over lotteries and is continuous
(in the weak topology). Moreover, we will define a reduction function that maps compound lotteries
to reduced one-stage lotteries: φ(P ) =

∑
F∈∆X

P (F )F .
Given a function V on the set of probability measures ∆X , then for each P ∈ ∆(∆X) we say

that V is Gateaux differentiable at P in ∆(∆X) if there is a measurable function v(·;P ) on ∆X

such that for any Q in ∆(∆X) and any α ∈ (0, 1):

V (αQ+ (1− α)P )− V (P ) = α

∫
v(z;P )[Q(dz)− P (dz)] + o(α)

where o(α) is a function with the property that o(α)
α → 0 as α→ 0. v(·;P ) is the Gateaux derivative

of V at P . V is Gateaux differentiable if V is Gateaux differentiable at all P . We call v(·;P ) the
local utility function at P .

Now consider the set of prior-information structure pairs, such that the prior f has support
on [w, b]. Formally, we imagine there are a finite number N of indexed states ωi. Each state
corresponds to a different payoff for the individual. Moreover, there are M signals indexed by sj .
An information structure I is an N by M matrix, such that the entries in each row sum to 1. The
i, j-th entry of the matrix, denoted Iij gives the probability that signal sj is realized if the state is
ωi. Given a prior distribution f over states, if the individual utilizes Bayes’ rule then a posterior
probability of state ωi conditional on observing signal sj is given by:

ψj(ωi) =
f(ωi)Iij∑
k f(ωk)Ikj

As mentioned in the body, we suppose that individuals have preferences over information struc-
tures given the prior f , denoted by %f . Also, as mentioned, formally, within the economics liter-
ature, these are typically modeled as preferences over two-stage compound lotteries; lotteries over
lotteries. Each signal si induces a lottery over outcomes — the posterior distribution ψj . This is the
lottery that individuals face in period 1 after receiving information. In period 0, the individual faces
a lottery over these possible lotteries — signal sj is received with probability

∑
i f(ωi)Iij := p(sj).

There is a natural bijection between prior-information structure pairs and two-stage compound
lotteries. Not only can we map a prior-information structure pair into a (unique) two stage com-
pound lottery, we can also show that any given two-stage compound lottery maps into a unique
prior-information structure pair. Given a two-stage lottery P with support p1, . . . , pn we first
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can find f , the prior: φ(P )(ωi) = f(ωi). To identify I, observe that we have a set of equations

pj(ωi) = ψj(ωi) =
f(ωi)Iij∑
k f(ωk)Ikj

, along with restrictions on the elements of I discussed in the main

text (and with a known f). These form a set of equations that generates a unique solution I. Given
this we can naturally map preferences and utility functionals, from the space of prior-information
structure pairs to the space of compound lotteries and vice versa.

We can now turn to discussing the formal properties and models related to our predictions,
using the framework of compound lotteries. First, Reduction of Compound Lotteries implies that
individuals only care about the reduced one-stage lotteries that they face:

Reduction of Compound Lotteries: For all P,Q ∈ ∆(∆X) if φ(P ) = φ(Q) then
P ∼ Q.

In deriving additional predictions, it will be useful to formally define early and late resolving
lotteries. Let Γ = {DF |F ∈ ∆X} be the set of degenerate lotteries in ∆(∆X). These are the set
of late resolving lotteries. Let Λ = {Q ∈ ∆(∆X)|Q(F ) > 0 ⇒ F = δx for some x ∈ X} be the set
of compound lotteries whose outcomes are degenerate in ∆X . These are the set of early resolving
lotteries.

Early resolving lotteries have all uncertainty resolved in the first stage and so the second stage
lotteries are degenerate. These are equivalent to situations where the information structure reveals
all information in Period 1; thus, posteriors after observing the signal are degenerate. In contrast,
late resolving lotteries have all uncertainty resolved in the second stage and so their first stage is
degenerate. These are equivalent to situations where the information structure reveals no informa-
tion in Period 1. Thus, posteriors after receiving information are exactly the same as the priors
before receiving information. We define the restriction of % to the subsets Γ and Λ as %̂Γ and %̂Λ.
Independence within Γ and Λ is defined as per standard for any one-stage lottery.

Given these definitions, we can now state Time Neutrality.

Time Neutrality: If P ∈ Γ and Q ∈ Λ and φ(P ) = φ(Q) then P ∼ Q.

Grant, Kajii and Polak (1998) formally define a preference for early resolution of information
in the setting of compound lotteries as:

Definition: % displays a preference for early resolution of uncertainty if for all Q,P ∈ ∆(∆X)
where P (F ′) = Q(F ′) for all F ′ /∈ {F,G1, G2}, P (G1) = βQ(F ), P (G2) = (1 − β)Q(F ), and
P (F ) = 0 and β ∈ [0, 1]; if F = βG1 + (1− β)G2 then P % Q.

Grant, Kajii and Polak (1998) define a notion of “elementary linear bifurcations” which is
equivalent to a binary relation over compound lotteries. They show that one compound lottery is
an elementary linear bifurcation of another if and only if the former Blackwell dominates the latter.

We next turn to discussing recursivity.

Recursivity: For all F,G ∈ ∆X , all Q ∈ ∆(∆X) and α ∈ (0, 1), DF % DG if and only
if αDF + (1− α)Q % αDG + (1− α)Q.

As discussed in the text recursivity is useful because decision-makers with recursive preferences
evaluate compound lotteries using a folding-back procedure — preferences over two stage lotteries
can be evaluated using preferences over one stage lotteries. Decision-makers replace the second
stage of any given compound lottery by the certainty equivalent generated by %̂Γ. The resulting

lottery is evaluated using %̂Λ.
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We say that a preference over two stage lotteries has a recursive representation (V1, V2) if the
preference can be represented with a functional V such that (i) V is derived using V1 and V2 in

the folding-back procedure described above, and (ii) V2 represents %̂Γ and V1 represents %̂Λ. Let

CE2(F ) denote the certainty equivalent of F using %̂Γ. More formally,

Definition 1 Suppose preferences over two-stage lotteries can be represented by V . We say pref-
erences have a recursive representation (V1, V2), where V1 and V2 are utility functions over one-
stage lotteries, if and only if for all P = (F1, P (F1); . . . ;Fn, P (Fn)), it is the case that V (P ) =
V1(CE2(F1), P (F1); . . . ;CE2(Fn), P (Fn)).

We now sketch out some of the functional forms that are relevant for our predictions. If
preferences satisfy recursivity, we can represent them using V1 and V2. Because Vi for i ∈ {1, 2}
is defined over two-stage lotteries that are isomorphic to one stage lotteries, we can simply define
Vi using one stage lotteries. We say V KP represents the Kreps-Porteus class of preferences if
V KP
i =

∑
u(x)F (x) for some ui for i ∈ {1, 2}.

We say V D represents the recursive disappointment aversion preferences if V D
i represents Gul’s

class of disappointment aversion for i ∈ {1, 2}. Formally

V D
i (F ) =

∑
x

ui(x)F (x) + βi
∑

x≤u−1
i (Vi(F ))

(ui(x)− V D
i i(F ))F (x)

where u is a function mapping from wealth to the reals, and β is a scalar which is greater or equal
to 0.

We say V RDU represents the recursive rank-dependent preferences if V RDU
i represents the rank-

dependent class. Formally,

V RDU
i (F ) =

∑
x

ui(x)

wi
∑
y≥x

F (y)

− wi(∑
y>x

F (y)

)
where u is a function mapping from wealth to the reals, and w is a function mapping from [0, 1] to
[0, 1], such that w(0) = 0, w(1) = 1 and w is strictly increasing. Individuals are pessimistic if and
only if w is convex.

Because Dillenberger and Segal’s (2015) conditions on preferences are quite specific to their aims
(beyond the assumption of recursivity) we refer interested readers to their discussion. Moreover,
since Brunnermeier and Parker’s (2005) model predicts that all information structures should be
indifferent to one another, we direct the interested reader to their paper for the details of their
functional form.

We next summarize Kőszegi and Rabin’s functional form. Given a gain-loss functional η, a scalar
weight on expected utility κ, a scalar weight on first period gain-loss utility of ν, and denoting,
given a distribution h over the payoff across states, any ζ ∈ (0, 1). Let u(ωh(ξ)) denote the utility
of the payoff level at percentile ξ. Then the functional form is:30

V KR(f, I) = κEf (u(ωi)) + ν
∑
j

p(sj)

∫ 1

0
η(u(ωψj (ξ))− u(ωf (ξ)))dξ

+
∑
i

∑
j

p(sj)ψj(ωi)

∫ 1

0
η(u(ωi(ξ))− u(ωψj (ξ)))dξ

30Denoting beliefs in Period 0 as f (our prior) and the beliefs in Period 1 (after receiving signal sj) as ψj
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Because this is a complicated functional form, we will define the function for our simple binary-
binary setup. The probability of good signal is p(G) = fp+ (1− f)(1− q), and the probability of
bad signal is p(B) = f(1 − p) + (1 − f)q. pj(ωi) denotes the posterior probability of state i after
observing signal j. Normalizing the Bernoulli utility of the high and low outcomes to 0 and 1 the
total utility of an information structure is:

V KR(f, I) = κf + ν
[
p(G)η(1− 0)(pG(H)− f) + p(B)η(0− 1)(f − pB(H))

]
+p(G)

[
pG(H)η(1− 0)pG(L) + pG(L)η(0− 1)pG(H)

]
+p(B)

[
pB(H)η(1− 0)pB(L) + pB(L)η(0− 1)pB(H)

]
The last functional forms we consider are those introduced in Ely, Frankel and Kamenica (2013).

They have two models, both of which deliver the same predictions regarding skewness. We provide
more general forms of their models and allow for individuals overall utility to: depend both on the
expected utility of the two stage lottery as well as suspense or surprise; and weight suspense and
surprise differently across periods. We denote ϑ as a function that turns suspense and surprise into
utils. As before we have a scalar weight on the expected utility term of κ and a scalar weight on
first period suspense or surprise utility of ν.

We first consider a generalized version of Ely, Frankel and Kamenica’s model of suspense, where
overall utility is given by:

V EFK
sus (f, I) = κEf (u(ωi)) + νϑ

(∑
j

p(sj)
∑
i

(pj(ωi)− f(ωi))
2
)

+
∑
j

p(sj)ϑ
(∑

i

pj(ωi)
∑
i

(I− pj(ωi))2
)

Simplifying to our binary-binary environment, we obtain:

V EFK
sus (f, I) = κf + νϑ

(
p(G)2(pG(H)− f)2 + p(B)2(f − pB(H))2

)
+p(G)ϑ

(
pG(H)2pG(L)2 + pG(L)2pG(H)2

)
+p(B)ϑ

(
pB(H)2pB(L)2 + pB(L)2pB(H)2

)
Ely, Frankel and Kamenica also provide a model of surprise, which we generalize, so that utility

is:

V EFK
surp (f, I) = κEf (u(ωi)) + ν

∑
j

p(sj)ϑ
(∑

i

(pj(ωi)− f(ωi))
2
)

+
∑
j

p(sj)
∑
i

pj(ωi)ϑ
(∑

i

(I− pj(ωi))2
)
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In our binary-binary setting, this becomes:

V EFK
surp (f, I) = κf + ν

[
p(G)ϑ

(
2(pG(H)− f)2

)
+ p(B)ϑ

(
2(f − pB(H))2

)]
+ p(G)

[
pG(H)ϑ

(
2pG(L)2

)
+ pG(L)ϑ

(
2pG(H)2

)]
+ p(B)

[
pB(H)ϑ

(
2pB(L)2

)
+ pB(L)ϑ

(
2pB(H)2

)]
We last turn to providing the exact parameterization of the preferences used in Figure 2. Panel

A depicts Kreps-Porteus preferences where u1(x) = −(x − 1)2 + 1 and u2(x) = x2. Panel B
depicts Kreps-Porteus preferences where u1(x) = x2 and u2(x) = x. Panel C depicts Kreps-Porteus
preferences where u1(x) = x4 and u2(x) = x. Panel D depicts Kreps-Porteus preferences where
u1(x) = x1.1 and u2(x) = x. Panel E depicts EFK’s suspense preferences where κ = ν = 1,
and ϑ(x) =

√
x (in line with EFK’s preferred specification in their paper). Panel F depicts KR

preferences where κ = ν = 1,

η(z) =

{
z if z ≥ 0

λz if z < 0

and |lambda = 2. Panel G depicts recursive preferences that have Gul’s (1991) functional form in
both periods, where u1(x) = u2(x) = x, β1 = 2 and β2 = 2. Panel H depicts recursive preferences
that have a rank-dependent functional form in both periods, where u1(x) = u2(x) = x, w1(p) = p1.3
and w2(p) = p2.

Appendix B: Proofs

Before we prove the statements in the text, we will prove a useful lemma. As mentioned in the the
text, there are many ways of conceptualizing skewness. We are taking a particular notion, which
ends up being formally related to the notion of downside risk aversion over lotteries (i.e., one stage
lotteries) by Menezes, Geiss and Tressler. This notion allows us to relate preferences for skewness to
the third derivative of the local utility functions that represent preferences over two stage compound
lotteries. Formally, we can think of a signal realization as generating a posterior, which in our case
is simply a number between 0 and 1. A signal structure (p, q) then generates a distribution over
possible posterior beliefs (and in fact a distribution that has support at two points). Lemma A
demonstrates that, interpreting the posterior distribution as a ‘value’, the information structures
we denoted as positively skewed will possess less downside risk than the corresponding structures
we denoted as negatively skewed.

Lemma A Suppose f = .5 and x < y. Then the posterior distribution induced by (x, y) has more
downside risk, in the sense of Menezes, Geiss and Tressler (1980), than that induced by (y, x).

Proof We prove that, given x < y and a prior of .5, the posterior distribution induced by (x, y) is
a mean-variance preserving transformation of that induced by (y, x). In other words, the posterior
distribution induced by the latter has more downside risk than the former. In order to show this,
we first construct the CDF of the posterior distributions induced by the two information structures.
We denote the CDF of the posterior distribution induced by (x, y) as F and of the (y, x) as G.
Recall that both of these are distributions over posterior beliefs; or distributions over numbers
between 0 and 1.

In order to prove Lemma A, we will use the conditions provided by Menezes, Tressler and Geiss
in their Theorem 1. They have three conditions, which we will verify.
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Condition (i) is that the two distributions induce the same mean posterior. This is true by the
law of iterated expectations, and the mean is simply the prior. Condition (ii) is that

∫ 1
0

∫ a
0 (G(b)−

F (b))dbda = 0. Condition (iii) is that that
∫ c

0

∫ a
0 (G(b) − F (b))dbda > 0 for c < 1. We will prove

these conditions together.
First we will describe the two CDFs.

G(b) =


0 if b ∈ [0, 1−y

1−y+x )

.5(1 + x− y) if b ∈ [ 1−y
1−y+x ,

y
y+1−x )

1 if b ∈ [ y
y+1−x , 1]

and F (b) =


0 if b ∈ [0, 1−x

1+y−x )

.5(1− x+ y) if b ∈ [ 1−x
1+y−x ,

x
1+x−y )

1 if b ∈ [ x
1+x−y , 1]

In order to simply our discussion, we will subdivide the set of possible posteriors [0.1] into
regions. We denote region A as [0, 1−y

1−y+x); B as [ 1−y
1−y+x ,

1−x
1+y−x); C as [ 1−x

1+y−x ,
y

y+1−x); D as

[ y
y+1−x ,

x
1+x−y ); and E as [ x

1+x−y , 1].
We can then compute the difference between the CDFs in each region:

G(b)− F (b) =



0 if b ∈ A
.5(1 + x− y) if b ∈ B
x− y if b ∈ C
.5(1 + x− y) if b ∈ D
0 if b ∈ E

This implies that

∫ a

0

(G(b)− F (b))db =



0 if a ∈ A
.5a(1 + x− y)− .5(1− y) if a ∈ B
(a− .5)(x− y) if a ∈ C
.5[1 + x− y]a− .5x if a ∈ D
0 if a ∈ E

We will now divide C into two separate intervals: C1 = [ 1−x
1+y−x , .5) and C2 = [.5, y

y+1−x).

Observe that
∫ a

0 (G(b) − F (b))db is strictly greater than 0 when a is in B and C1. Similarly,∫ a
0 (G(b)− F (b))db is strictly less than 0 when a is in C2 and D.

Thus, to prove Conditions (ii) and (iii) we simply need show that
∫ .5

0

∫ a
0 (G(b) − F (b))dbda =

−
∫ 1
.5

∫ a
0 (G(b) − F (b))dbda. Observe that

∫ .5
0

∫ a
0 (G(b) − F (b))dbda = 1

8 [1 − 2y
1+x−y ][ (1+x−y)(1−x)

1−x+y −
(1−y)]. Moreover

∫ 1
.5

∫ a
0 (G(b)−F (b))dbda = 1

8 [ 2x
1+x−y −1][x−y][ 2y

1+y−x−1]. Routine algebra shows

that the first is then equal to 1
8 [x+y−1

1+x−y ][y
2−y−x2+x

1−x+y ] and the second is equal to 1
8 [x+y−1

1+x−y ][−y
2+y+x2−x
1−x+y ].

Thus, Conditions (i), (ii) and (iii) of Theorem 1 of Menezes, Geiss and Tressler (1980) hold and
so the posterior distribution G has more downside risk than the posterior distribution F . �

Lemma 1 For any (p, q) ∈ S, observing a good signal increases the posterior on high outcome
relative to the prior, and observing a bad signal decreases the posterior on high outcome relative to
the prior.

Proof We will prove each part of the Lemma in turn. First we prove the first part. Recall that
for a given prior 0 < f < 1 on a high payoff and information structure (p, q), the posterior for the
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high payoff given the good signal is

ψG =
fp

fp+ (1− f)(1− q)
.

Now ψG > f if and only if

ψG =
fp

fp+ (1− f)(1− q)
> f,

which holds if and only if
(1− f)p > (1− f)− (1− f)q,

which is the same as
p+ q > 1.

An analogous series of steps establishes the result for the posterior after observing a bad signal. �

Lemma 2 For any signal structure (p′, q′) ∈ [0, 1] × [0, 1], there exists a (p, q) ∈ S that generates
the same posterior distribution. However, for any T ⊂ S there exists a (p′, q′) ∈ S such that there
is no element of T that generates the same posterior distribution as (p′, q′).

Assume that p+ q < 1 (observe that all signal structures on p+ q = 1 give the same posterior
distribution). In this case, denote p′ = 1−p and q′ = 1−q. We will work with likelihood ratios rather
than posterior beliefs. Under (p, q), likelihood ratio p

1−q occurs with probability fp+ (1− f)(1− q)
and likelihood ratio 1−p

q occurs with probability f(1− p) + (1− f)q.

Under (p′, q′) likelihood ratio 1−p′
q′ = p

1−q occurs with probability f(1 − p′) + (1 − f)q′ =

fp + (1 − f)(1 − q). Likelihood ratio p′

1−q′ = 1−p
q occurs with probability fp′ + (1 − f)(1 − q′) =

f(1− p) + (1− f)q. Therefore (p′, q′) generates the same posterior distribution as (p, q). Moreover,
p′+ q′ = (1− p) + (1− q) = 2− p− q ≥ 1 since p+ q ≤ 1. So therefore, instead of considering some
(p, q) we can always instead consider the corresponding p′ = 1− p, q′ = 1− q.

To prove the second part observe that in order for two signal structures (p, q) and (p′, q′), both

in S, to generate the same posteriors it must be the case that p′

1−q′ = p
1−q and 1−p′

q′ = 1−p
q .

Therefore p′ − p′q = p − pq′ and q − p′q = q′ − pq′, which is equivalent to q = −p+pq′+p′
p′ and

q = q′−pq′
1−p′ . Simplifying, we have −p+pq

′+p′

p′ = q′−pq′
1−p′ , or p′q′−pq′p′ = −p+pq′+p′+pp′−pp′q′−p′2.

This holds if and only if p′q′ = −p+pq′+p′+pp′−p′2, or p(1−q′−p′) = −p′q′+p′−p′2 = p′(1−q′−p′).
This equality holds if and only if p = p′ or q′ + p′ = 1. The latter case implies that p′ = q′ = .5
which implies p = q = .5. The former immediately implies q = q′. �

Lemma 3 (p′, q′) Blackwell dominates (is Blackwell more informative than) (p, q) if and only if
p′ ≥ max{ p

1−q (1− q′), 1− q′ 1−pq }.

Proof Recall that one signal structure (p′, q′) is Blackwell more informative than another (p, q)
if and only if the distribution of posteriors induced by (p′, q′) is a mean preserving spread of the
distribution induced by (p, q). By the law of iterated expectations, the expected posterior under
(p′, q′) and (p, q) must be the same — the prior. Because there are only 2 signals (and so 2 posteriors)
as well as only 2 states, the problem reduces to showing that the posteriors under (p′, q′) are more
extreme (in the sense that they are farther from the prior) than the posteriors under (p, q). In
order to simplify the proofs, we will show an equivalent result — that the likelihood ratios under
(p′, q′) are more extreme (farther from 1) than the likelihood ratios under (p, q).
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The likelihood ratios after observing a good signal under (p′, q′) and (p, q) are (respectively)
p′

1−q′ and p
1−q while the likelihood ratios after observing a bad signal are 1−p′

q′ and 1−p
q .

In order for the ratios under (p′, q′) to be farther from 1 than (p, q), then p′

1−q′ ≥
p

1−q and
1−p′
q′ ≤

1−p
q . This is equivalent to p′ ≥ p

1−q −
p

1−q q
′ and p′ ≥ 1− q′ 1−pq . �

Prediction 1 Fixing f , if a decision maker satisfies Reduction of Compound Lotteries then they
should be indifferent between all information structures.

Proof Under Reduction of Compound Lotteries this is true by definition. �

Prediction 2 Fixing f , if a decision-maker satisfies Time Neutrality they should be indifferent
between (1, 1) and (.5, .5).

Proof Under time Neutrality this is true by definition. �

Prediction 3 Let %f be represented by V , where V is Gateaux differentiable. Then the local utility
function of V is everywhere convex (concave) if and only if the decision-maker prefers Blackwell
more (less) information structures.

Proof This is proved by Grant, Kajii and Polak (1998). �

Prediction 4 Let %.5 be represented by V , where V is Gateaux differentiable. If the local util-
ity function of V is thrice differentiable and has a convex (concave) derivative everywhere, then
(x, y) %.5 (-.5)(y, x) whenever x ≤ y.

Proof Assume that all local utility functions are thrice differentiable and have a positive third
derivative. Denote the local utility function v(·, P ). Given f = .5, suppose information structure
(x, y) generates a posterior distribution Z1 and (y, x) generates posterior distribution Z0. By
Lemma A, Z0 has more downside risk aversion than Z1. We simply need to show that V (Z1) −
V (Z0) ≥ 0.

Let Z(α) = αZ1 + (1 − α)Z0. By Grant, Kajii and Polak (pg 255) because V is Gateaux
differentiable d

dαV (Z(α))|α=β exists for any β in (0, 1) and is equal to
∫
v(z;Z(β))[Z1(dz)−Z0(dz)].

Observe that this is simply the expected value of v under Z1 less the expected value of v under
Z0. By Theorem 2 of Menezes, Geiss and Tressler (1980) this is positive for any β ∈ (0, 1).
Integrating with respect to β yields V (Z(1)) − V (Z(0)) ≥ 0 which gives the required result since
V (Z(1)) = V (Z1) and V (Z0) = V (Z(0)). �

Prediction 5 Suppose preferences have a recursive representation (V1, V2) such that V1 and V2

have expected utility representations with Bernoulli utilities u1 and u2. Then u1 ◦ u−1
2 is convex

(concave) if and only if the decision-maker prefers Blackwell more (less) information structures.
Moreover, if the derivative of u1 ◦ u−1

2 is convex (concave), then (x, y) %.5 (-.5)(y, x) whenever
x ≤ y.

Proof The first relationship between Blackwell informativeness and convexity/concavity is proved
in Grant, Kajii and Polak (1998). For the next part, denoting τ = u1(u−1

2 ) the utility of (p, q) is

simply: τ( fp
fp+(1−f)(1−q))(fp+ (1− f)(1− q)) + τ( (1−p)f

(1−p)f+q(1−f))((1− p)f + q(1− f)). Observe that
this implies the individual is an EU maximizer over a utility function defined over their posteriors.
By Lemma A we know that given f = .5 and x < y the posterior distribution induced by (y, x) has
more downside risk than (x, y). Thus by Theorem 2 of Menezes, Geiss and Tressler (1980) if the
third derivative of τ is positive then (x, y) must by preferred to (y, x). �
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Prediction 6 Suppose preferences have a recursive representation (V1, V2) such that V1 and V2

are both in Gul’s class of disappointment aversion functionals (or rank-dependent utility) and the
decision-maker is disappointment averse (has a strictly convex weighting function). Then there
exists an 0 < ε′ such that for all ε < ε′, (.5, .5) �.5 (.5 + ε, .5 + ε).

Proof Recall that we have representations in period 1 and period 2 which are (u1, β1) and (u2, β2).

If a good signal is realized, utility is pG(H)
1+β2pG(L) . If a bad signal is realized, utility is pB(H)

1+β2pB(L) .

Iterating the process to period 1, and denoting τ = u1(u−1
2 ) ex-ante utility is:

p(G)τ
(

pG(H)
1+β2pG(L)

)
+ p(B)τ

(
pB(H)

1+β2pB(L)

)
(1 + β1)

1 + β1p(B)

Setting f = .5 and p = q gives p(G) = p(B) = .5. Then we have

τ
(

p
1+β2(1−p)

)
+ τ

(
1−p

1+β2p

)
(1 + β1)

2 + β1

Observe that utility is continuous and differentiable in the region around p = .5. Clearly the
term, 1

2+β1
is irrelevant for the derivative with respect to p, so we will take the derivative of the

numerator with respect to p. This is:

τ ′
(

p

1 + β2(1− p)

)
1 + β2

(1 + β2 − β2p)2
− τ ′

(
1− p

1 + β2p

)
(1 + β1)(1 + β2)

(1 + β2p)2

Taking limit of the derivative as p→ .5 gives:

τ ′
(

1

2 + β2

)
1 + β2

(1 + .5β2)2
− τ ′

(
1

2 + β2

)
(1 + β1)(1 + β2)

(1 + .5β2)2
= τ ′

(
1

2 + β2

)
(−β1)(1 + β2)

(1 + .5β2)2
< 0

Next we prove the result for RDU. If a good signal is realized, utility is: w2(pG(H)). If a bad
signal is realized, utility is w2(pB(H)). Ex-ante, before any signal is realized, utility is:

w1(p(G))τ(w2(pG(H))) + (1− w1(p(B)))τ(w2(pB(H)))

Observe that this function is continuous and differentiable in the neighborhood of p = q = .5.
Setting f = .5 and p = q gives p(G) = p(B) = .5. Then we have

w1(.5)τ(w2(p)) + (1− w1(.5))τ(w2(1− p))

The derivative of this with respect to p is

w1(.5)w′2(p)τ ′(w2(p))− (1− w1(.5))τ ′(w2(1− p))w′2(1− p)

Taking the limit of this as p goes to .5 gives

τ ′(w2(.5))w′2(.5)[2w1(.5)− 1]

When w is strictly convex, this must be negative, since w1(.5) < .5. �

Prediction 7 Suppose preferences belong to the class defined by Dillenberger and Segal (2015).
Then if (.5, .5) %.5 (x, x) for all x ≥ .5, then for all x ≤ y, (.5, .5) %.5 (y, x). However, it is possible
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that (.5, .5) -.5 (x, y).

Proof See Dillenberger and Segal (2015) for the proof. �

Prediction 8 Suppose preferences represented by a BP functional form. Then the decision-maker
should be indifferent between all information structures.

Proof This is by construction. In BP the only reason individuals would not hold the most optimistic
beliefs would be because such beliefs would cause them to take an incorrect action. Here there are
no actions to be taken, so individuals always hold the highest beliefs, and so are indifferent across
information structures. �

Prediction 9 Suppose preferences represented by a KR or EFK functional form. Then (x, y) ∼.5
(y, x). Moreover, if preferences are represented by a KR functional form (an EFK suspense func-
tional form with a sufficiently convex surprise function/an EFK surprise functional form with a
decreasing surprise function), and they are loss averse then there exists an 0 < ε′ such that for all
ε < ε′, (.5, .5) �.5 (.5 + ε, .5 + ε).
Proof We discussed KR’s functional form previously. In our environment utility is:

V KR(f, I) = κf + ν
[
p(G)η(1)(pG(H)− f) + p(B)η(−1)(f − pB(H))

]
+p(G)

[
pG(H)η(1)pG(L) + pG(L)η(−1)pG(H)

]
+p(B)

[
pB(H)η(1)pB(L) + pB(L)η(−1)pB(H)

]
= κf + ν

[
η(1)p(G)(

fp

p(G)
− f) + η(−1)p(B)(f − f(1− p)

p(B)
)
]

+
[
η(−1) + η(−1)

][
p(G)pG(H)(1− pG(H)) + p(B)pB(L)(1− pB(L))

]
= κf + ν

[
η(1) + η(−1)

]
f(1− f)(p+ q − 1)

+
[
η(−1) + η(−1)

][
p(G)pG(H)(1− pG(H)) + p(B)pB(L)(1− pB(L))

]

Setting f = .5, then we must have p(G)|(p,q) = p(B)|(q,p) and pG(H)|(p,q) = pB(L)|(q,p). There-
fore,

V KR(.5, (p, q)) = V KR(.5, (q, p))

In addition, if we assume p = q, then we have p(G) = .5 = p(B) and pG(H) = p = pB(L). Then

V KR(.5, (p, p)) = .5κ+ (.25ν(2p− 1) + (1− p)p)
[
η(1) + η(−1)

]
The derivative of this with respect to p is

(.5ν + 1− 2p)
[
η(1) + η(−1)

]
At p = .5 this is less than or equal to 0 as long as η(1) + η(−1) < 0.
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We next turn to the EFK functional forms. Using their model of suspense, we have

V EFK
sus (f, (p, q)) = κf + νϑ

(
p(G)2(pG(H)− f)2 + p(B)2(f − pB(H))2

)
+p(G)ϑ

(
pG(H)2pG(L)2 + pG(L)2pG(H)2

)
+p(B)ϑ

(
pB(H)2pB(L)2 + pB(L)2pB(H)2

)
= κf + νϑ

(
p(G)2(

fp

p(G)
− f)2 + p(B)2(f − f(1− p)

p(B)
)2
)

+p(G)ϑ
(

2pG(H)(1− pG(H))2 + 2(1− pG(H))pG(H)2
)

+p(B)ϑ
(

2(1− pB(L))pB(L)2 + 2pB(L)(1− pB(L))2
)

= κf + νϑ
(

2f2(1− f)2(p+ q − 1)2(
1

p(G)
+

1

p(B)
)
)

+p(G)ϑ
(

2pG(H)(1− pG(H))
)

+ p(B)ϑ
(

2pB(L)(1− pB(L))
)

Setting f = .5, then we must have p(G)|(p,q) = p(B)|(q,p) and pG(H)|(p,q) = pB(L)|(q,p). Hence,

V EFK
sus (.5, (p, q)) = V EFK

sus (.5, (q, p)).
In addition, if we assume p = q, then we have p(G) = .5 = p(B) and pG(H) = p = pB(L). Then

V EFK
sus (.5, (p, p)) = .5κ+ νϑ

((2p− 1)2

2

)
+ ϑ

(
2p(1− p)

)
The derivative of this with respect to p is

2(2p− 1)νϑ′
((2p− 1)2

2

)
+ 2(1− 2p)ϑ′

(
2p(1− p)

)
As p approaches .5, we have

dV EFK
sus (.5, (p, p))

dp
|p→.5+ < 0 if νϑ′(0) < ϑ′(.5)

We next derive the result for EFK’s model of surprise.

V EFK
surp (f, (p, q)) = κf + ν

[
p(G)ϑ

(
2(pG(H)− f)2

)
+ p(B)ϑ

(
2(f − pB(H))2

)]
+p(G)

[
pG(H)ϑ

(
2pG(L)2

)
+ pG(L)ϑ

(
2pG(H)2

)]
+p(B)

[
pB(H)ϑ

(
2pB(L)2

)
+ pB(L)ϑ

(
2pB(H)2

)]
= κf + ν

[
p(G)ϑ

(
2(

fp

p(G)
− f)2

)
+ p(B)ϑ

(
2(f − f(1− p)

p(B)
)2
)]

+p(G)
[
pG(H)ϑ

(
2(1− pG(H))2

)
+ (1− pG(H))ϑ

(
2pG(H)2

)]
+p(B)

[
(1− pB(L))ϑ

(
2pB(L)2

)
+ pB(L)ϑ

(
2(1− pB(L))2

)]
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Then

V EFK
surp (f, (p, q)) = κf + ν

[
p(G)ϑ

(2f2(1− f)2(p+ q − 1)2

p(G)2

)
+ p(B)ϑ

(2f2(1− f)2(p+ q − 1)2

p(B)2

)]
+p(G)

[
pG(H)ϑ

(
2(1− pG(H))2

)
+ (1− pG(H))ϑ

(
2pG(H)2

)]
+p(B)

[
(1− pB(L))ϑ

(
2pB(L)2

)
+ pB(L)ϑ

(
2(1− pB(L))2

)]
Setting f = .5, then we must have p(G)|(p,q) = p(B)|(q,p) and pG(H)|(p,q) = pB(L)|(q,p). Hence,

we have
V EFK
surp (.5, (p, q)) = V EFK

surp (.5, (q, p))

In addition, if we assume p = q, then we have p(G) = .5 = p(B) and pG(H) = p = pB(L). Then

V EFK
surp (.5, (p, p)) = .5κ+ νϑ

((2p− 1)2

2

)
+ pϑ

(
2(1− p)2

)
+ (1− p)ϑ

(
2p2
)

The derivative of this with respect to p is

2(2p− 1)νϑ′
((2p− 1)2

2

)
+ 4p(1− p)

[
ϑ′
(

2p2
)
− ϑ′

(
2(1− p)2

)]
As p approaches .5, we have p2 > (1− p)2 and

dV EFK
surp (.5, (p, p))

dp
|p→.5+ < 0 if ϑ is decreasing

Appendix C: Additional Investigations

Extreme Medium Medium
Pos. Neg. Pos. Neg. Pos. Neg.
(.5,1) (1,.5) (.6,.9) (.9,.6) (.6,.9) (.9,.6)

Pos. (.3, .9) 107 42 149 (.3, .9) 85 22 107 (.5, 1) 101 26 127
Neg. (.9,.3) 17 17 34 (.9,.3) 9 13 22 (1, .5) 43 26 69

124 59 183 94 35 129 144 52 144

Table 6: Relationships: Skewness Preferences

Table 6 cross-tabulates within-person choice patterns in the questions that present positively
and negatively skewed information structures. As we discussed above, we see that those who prefer
one positively skewed signal are very likely to prefer another positively skewed signal.

Tables 7 and 8 report results of the main experiment, broken down by condition. It is easy to see
that the choices and preference intensities are similar across the two conditions, with the exception
of Q2. In Condition 1, 75% of the subjects prefer positive skew in Q2, whereas in condition 2 this
fractions is 60%. The two fractions are statistically different at a p-value of 0.01.
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Table 7: Main Experiment, Condition 1

choice percentage choice intensity for chosen option

Option 1 Option 2 N option 1 p-value option 1 option 2 p-value

Q1 (1, 1) (.5, .5) 119 0.77 .000 8.49 6.23 .000
Q2 (1, .5) (.5, 1) 119 0.25 .000 5.4 7.32 .000
Q3 (.9, .3) (.3, .9) 119 0.16 .000 5.05 6.54 0.015
Q5a (.9, .6) (.6, .9) 65 0.28 .000 5.39 5.96 0.421
Q5b (.55, .55) (.5, .5) 54 0.77 .000 6.45 5.67 0.406

Table 8: Main Experiment, Condition 2

choice percentage choice intensity for chosen option

Option 1 Option 2 N option 1 p-value option 1 option 2 p-value

Q1 (.5, .5) (1, 1) 131 0.21 .000 6.48 8.15 .000
Q2 (.5, 1) (1, .5) 131 0.6 .035 7.14 6.64 0.192
Q3 (.6, .9) (.9, .6) 131 0.74 .000 6.22 5.53 .155
Q5a (.9, .3) (.3, .9) 64 0.23 .000 6.77 6.53 0.755
Q5b (.5, .5) (.55, .55) 67 0.27 .000 4 5.75 0.04

Appendix D: Experimental Protocol

The experimenters gave participants a ticket from a raffle ticket roll in the sequence with which
they entered the lab. The ticket assignment was simple and public, making it transparent to all
participants that each participant had equal chances in the lottery coming up. The participants
read the instructions displayed on their screens and waited for the experimenter to begin the study.
The instructions on the screen, included in D.1 below, informed participants that the study was
75 minutes long and had two parts and that they would receive $7 for participating in the study.
These instructions also informed the participants that they would be participating in a lottery with
the ticket they received as they entered the room. With 50% chance, they would earn an additional
$10, and with 50% chance they would not earn any additional money.

The experimenter told the participants to put on their headphones in order to listen to the
instructions that will be given on the next page. The participants were asked if they had any
difficulties with the video or audio components of the program. Only 1 person did, and his/her
microphone was adjusted immediately. The instructional video, transcribed in D.2, explained that
whether a particular ticket wins or loses the lottery is determined by the last digit of the ticket
number and the outcome of a 10-sided die throw. They learned that the experimenter would roll
the die and cover it with a cup after seeing the die outcome. They were told that if the die outcome
is an odd (even) number and the last digit of the ticket the participant is holding is also odd (even),
the participant would win $10. And, if the last digit of the ticket and the die outcome fail to match
in this way, the participant does not win any money. Importantly, the instructions emphasized that
none of the participants would learn the outcome of the die and thus whether they won or lost,
before the experiment was over. They were told that one of the participants would be invited to
lift the cup and read the number on the die out loud at the end of the experiment for everyone to
learn the outcome. The participants were also told that they would enter their ticket number and
the experimenter would supply a code to be entered so that the computer program would know
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whether they won or lost, right from the beginning of the experiment. Then, participants were
given hypothetical examples of this process and understood how the computer would be able to
know more than they did and would be able to generate clues if needed. The instructions also
explained that in the first part of the study was expected to take around half the allotted time
for the experiment and the participants would be answering five questions, each with two clue-
generating options, about their preferences about what kind of clues they would like to get about
whether their ticket won or lost. The instructions explained that 1) one of these five questions
would be chosen at random to be carried out at the end of the first part, 2) that they would
observe the clue generated by the option they chose in that question at that time, and 3) they
would sit with that clue for the rest of the experiment until they were able to learn whether they
won or lost the lottery at the end of the 75 minutes. The participants also learned that they would
be answering questions unrelated to the lottery in the second part and that these questions did not
have any informational or monetary value associated with them.

Throughout the study, we rely on video technology to deliver instructions that are either very
long or very important, or both. We find that visual delivery aids comprehension and increases
attention compared to text. In addition, the same amount of information can be conveyed faster.
The links for the videos and the transcriptions for a representative sample are included in D.5.

When the initial instructional video was over, participants were asked to enter the last digit of
their ticket number and the experimenter rolled a 10-sided die on the table publicly and covered it
with a cup so that the outcome was not visible to the participants. The experimenter informed the
participants “I rolled the die. At this point, the outcome of the lottery for everyone is determined.
I will now look at the outcome and give you a code to enter, so that the computer knows what the
outcome was.” and gave one of the following codes: sugar, milk, cake, candy, coffee, butter; where
sugar, cake or coffee informed the computer that the die outcome was an odd number. We used
more than one code and changed it around across sessions to prevent participants from learning
the codes across sessions.

After entering the code and the last digit of their ticket numbers, the participants answered
several comprehension questions regarding the instructions they received. The program instructed
them if they answered any question incorrectly.

On the next page, they were asked to rate their happiness in order to elicit an initial baseline
happiness measure. The question asked “Please indicate how happy/unhappy you are feeling in
the current moment by sliding the scale. -100 means you are feeling ‘very unhappy’, 100 means
you are feeling ‘very happy’, 0 means you are feeling ‘neutral’.” After this question, instructions
(included in D.3) informed the participants that they were proceeding to part 1 of the study where
they would be making choices about the kind and amount of information they would like to get
about whether their ticket won or lost the lottery.

Before each question in part 1, they listened to video instructions that presented the options
in the question. The transcription of the instructions for Q2 is included as an example in D.4. All
videos can be accessed from links provided in D.5. The videos for each question were all structured
in the following manner: 1) The two options in the question were presented, and the text indicating
the contents of each box in the options were read. 2) For each option, the box from which the ball
would be drawn if the participant won the lottery was highlighted, followed by the box from which
the ball would be drawn if the participant lost the lottery. 3) The percentage of the instances a red or
a black ball would be drawn from Option 1 was indicated and explained, 4) The meaning (posterior
probability of winning or losing) associated with observing a red or a black ball from Option 1
was defined and explained, 5) steps 3 and 4 were repeated for Option 2, 6) Option 1 and Option 2
were displayed next to one another and a summary of the information regarding the likelihood of
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observing each ball color and the posterior probability of winning associated with each color was
included below each option. This final comparison visual is the same graphic as the one that the
participants saw when they were making a choice between the two options. The video instructions
did not provide any additional information than the information already included on their screens
right at the time of making a choice, however we believe that watching the video instructions before
making a choice forced participants to pay more close attention to this information and provided
them with more of an understanding of how the posterior probabilities were calculated.

After watching the video and completing the comprehension questions, the participants arrived
at a page that displayed the two options graphically and explained each verbally. Figure 5 displays
a screen shot of Q1, Figure 4 displays a screen shot of Q2, and Figure 8 displays a screen shot of
Q4 to give a sense of the information subjects could see on the page at the time they were making
their decisions. After each choice, subjects also indicated how strongly they preferred the option
they choice over the option they did not. The scale ranged from 0 (indicating indifference), to 10
(indicating a very strong preference). Figure 6 displays this question.

After participants answered all five questions, one question was randomly chosen for each par-
ticipant to be carried out and the program randomly drew a ball from the option the participant
chose in that question. The program displayed the two options in the chosen question along with
the participant’s choice in that question on the screen. It also indicated whether the ball drawn
from the option the participant chose was red or black. Given the color of the ball drawn from
the option, and the information about the posteriors included in the graphics of the option, the
participant was asked to enter the probability that s/he won the lottery (which s/he could simply
read from the graphic if s/he paid attention). A screen shot of this page is displayed in Figure 9.

On the next page, the participants were asked to rate their happiness in that moment using the
same scale as before. On the following pages, they were also asked to rate how optimistic/pessimistic
they feel about winning the lottery, to note whether they had any questions or confusions about
part 1 and to provide a short explanation for the reason behind their choices in the first three
information-preference questions in part 1.

In the remaining time before the outcome of the lottery was to be revealed, subjects were also
asked a series of hypothetical questions across 5 blocks in Part 2 of the study.31 Each block featured
10 questions, asking whether individuals preferred to take Option A or Option B. In blocks 1-3,
Option B was receiving some amount of money for sure, beginning with $2 and increasing in $2
increments to $20 dollars. In block 1, Option A was a gamble that was structured as follows: “a
ball will be drawn from a box with 50 white and 50 blue balls. If a blue ball is drawn you receive
$30, otherwise nothing.” In block 2, Option A was a gamble that was structured as follows: “a
ball will be drawn from a box with white and blue balls (the respective number were not specified).
If a blue ball is drawn you receive $30, otherwise nothing.” Option B was receiving some amount
of money for sure, beginning with $2 and increasing in $2 increments to $20 dollars. In block 3,
Option A was a gamble that was structured as follows: “a ticket will be drawn from an urn that
features 101 tickets labeled from 0 to 100. The number on the ticket determines how many blue
balls will be in a box of 100 blue and white balls. Next, a ball will be drawn from the box. If a blue
ball is drawn you receive $30, otherwise nothing.” In block 4, Option A allowed the individual to
receive $30 for sure. Option B was a gamble that paid an 80% of x and a 20% of 0. x varied from
$34 to $74 in $4 increments. In block 5, Option A was a gamble which allowed the individual to
receive a 25% chance of $30 and 75 % chance of $0. Option B was a gamble that paid an 20% of
x and a 80% of 0. x varied from $34 to $74 in $4 increments.

31These questions were hypothetical in order to ensure that subjects could not use the information to adjust their
responses to questions that would result in actual monetary rewards.
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At the end, when all participants were done (or when time was running out), one participant
was invited to lift the cup and announce the die outcome. All participants were asked to indicate
this outcome and whether they won or lost the lottery as a result on their screens. On the next
page, right after learning the outcome of the lottery, the participants were asked once again to rate
their happiness in that moment.

The experimenters went to each participant’s stall to pay him or her in private. The experi-
menter checked the ticket number, paid the participant in cash and asked him or her to fill out
the receipt form and answer one more question on the last page of the study and advanced the
participant’s program to that last page. On the last page, after receiving the cash, the participants
were asked once again to rate their happiness in that moment.

Experimental Materials

D.1. General Instructions

Welcome to our informational decision making study! Please read the instructions carefully. We
will ask comprehension questions in a little bit.

You may have participated in different kinds of studies across campus. The instructions we give
in this study are accurate and reflect exactly how the study will unfold. We will explain how the
study is programmed, how the computer will determine the questions and information you will see
and how you will get paid in accordance with what actually will happen. In other words, there is
no deception of any kind.

This study will take 75 minutes and has two parts. You will receive $7 for your participation.
If you fail to follow the instructions or disturb the flow of the study in any way, you will be asked
to leave the study. In addition to the $7 for participation, you may also win an additional $10
in the lottery we will conduct. The chances of winning are 50% and whether you win $10 will be
determined by the ticket number you have.

Please silence your phones and put your belongings under the table, and leave them alone during
the entire study. We need your full engagement; even when you are not actively participating in
the study, please wait patiently and refrain from using your cell phone, checking email, surfing the
internet, etc. This is a silent study. Please do not make any noise, you will be asked to leave the
study without any compensation if you do. If you are having technical difficulties at any time, raise
your hand quietly and the experimenter will come to help. You are not allowed to ask questions
about the content of the study to the experimenter, please read and listen to the instructions very
carefully to avoid confusion.

Please stay on this page and do not proceed before instructed to do so. During the study, we
will need you to listen to instructional videos before you make decisions. Therefore, please put on
your headphones now and listen to the following instructions.

D.2. Lottery and Information: Transcription of video instructions

You will participate in a lottery with the ticket you got when you arrived. The chances of winning
are 50%. If you win the lottery, you will get an additional $10. If you lose the lottery you will not
get any additional payment. We will determin’e whether you won or lost at the beginning of the
study. The experimenter will roll a 10-sided die and cover it with a cup. The die outcome can be 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, each with equal chance. If the die outcome is even, and your ticket’s last digit
is even, it means that you won the lottery. If the die outcome is odd, and your ticket’s last digit
is odd, it also means that you won the lottery. Otherwise, it means that you lost the lottery. So,
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you have a 50% chance of winning and 50% chance of losing. Note that the chance of winning and
losing is equal for everyone and does not depend on how many people are in the session. Multiple
people in the same session will win the lottery. Whether you win or lose is entirely determined by
your ticket number and the die roll. There is an important detail about how we will reveal the
outcome of the die roll. When the experimenter rolls the die, she or he will hide the outcome with
a cup placed over the die until the end of the study. The experimenter will know the outcome at
that time, but the cup will only be removed at the end of the study. So you will not learn about
the outcome of the die roll until the very end of the study. So even though you know your ticket
number, since you don’t know the die roll, you will not know whether you won or lost the lottery,
even though it is determined already. At the end of the study, the experimenter will remove the cup
and everyone will be able to see the die roll. Even though you will not learn about the outcome of
the die roll right away, the experimenter will give you a code to enter, in order to let your computers
know whether the die roll was even or odd. For example, say that we programmed the survey such
that the computer knows that the die roll was even if you typed in the code word ’home’, and that
the die roll was odd if you typed in the code word ’house’. If the die roll is even, the experimenter
will instruct you to enter the code word ’home’. Of course, we will be using different code words in
the study. You will not know whether a given code corresponds to even or odd outcome, but the
computer will. You will also be asked to enter the last digit of your ticket number. Having both
pieces of information, the computer will be able to know immediately whether you won or lost the
lottery. Now, let’s talk about the study itself. During the first half of the study, we will ask your
preferences about what kind of clues you would like to get about whether your ticket won or lost.
Remember, the outcome of the lottery is determined at the beginning of the study, but stays hidden
from you until the experimenter removes the cup. However, the computer whether you won or lost,
and as a result, it is able to give you signals about the outcome. These signals will come from
your choice of clue generating options. You will make five decisions across five different questions,
each presenting two clue generating options. Each of the clue generating options has the potential
to provide signals about whether you won or lost. The amount and the type of information will
differ across these options. We are interested in learning about your preferences regarding different
types of clue generating options. Before each decision, you will watch an instructional video that
explains each of the clue generating options. It is very important that you pay attention to these
videos. At the moment you started the study, the computer picked one question at random among
the 5 questions you will answer. Each question has equal chance of being picked. Your decision
in the question that is picked at random will be carried out at the end of Part 1. In other words,
at the end of Part 1, you will observe a signal generated by the option you chose in that question.
This is done in order to make sure that you answer each of the 5 questions as if it were the only
question being asked. So please pay attention to each question. One will be carried out to give you
the type of clue you prefer about whether you won or lost. Once you observe a clue according to
your choice in the chosen question, you will sit with that clue until the end of the study. Please
take this into account when making your choices. While everyone will eventually learn the winning
lottery numbers at the end of the study, people may differ in their preferences regarding the type of
clue they want to sit with until they learn the winning ticket numbers. As you are waiting to learn
the winning ticket numbers, we will ask you other questions that are unrelated to the lottery in
the Second Part of the Study. Please take your time in answering all questions carefully. Finishing
early does not mean you get to leave. Please wait patiently and do not engage in any other activity
such as using your phone, web browsing, etc. Please also make sure not to make any distracting
noises At the very end of the study, the experimenter will invite a participant to lift the cup hiding
the die roll outcome and announce the winning ticket numbers. At that time you will fill out the
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receipt forms and get paid.

D.3. Introduction to Information Structure Choices

In the first half of the study, there will be 5 questions, each asking you to choose 1 out of 2 options
that generate different clues about your chances of having won the lottery. Some options can give
you further information about the likelihood that you won or lost the lottery. Some options do
not give any additional information at this time. Some options give more information than others.
And importantly, all these options differ in the kind of information you can get. Please pay close
attention to the instructional videos and the options descriptions to make sure you understand
these differences before you make a choice. At the end of Part 1, we will ask you to provide a brief
description of why you made each choice, so please consider the options carefully, remembering
that each option can provide different amounts and types of information. The computer randomly
picked a question among these 5 questions at the time you started the survey. Your choice in that
question will be honored and you will get the clue you expressed a preference for. You will sit with
the information you gained (if you gained any) for the rest of the experiment. Until you are done
answering all questions, you will not know which question is picked. The chances of each question
being picked are the same. Therefore, please treat each question as if that is the only question
being asked. These questions are independent of one another. Only one is selected randomly, and
you will receive information based on your preferred option. Now, please make sure that you have
your headphones on. You will be asked to keep them on until you are done with the first half of
the study.

D.4. Introducing Q2: Transcription of video instructions

We want to overview some of the general points at this time. Remember that regardless of which
Option you pick, the computer draws a ball from the left box in that option if you won the lottery,
and it draws a ball from the right box if you lost the lottery. Before you see the color of the ball
drawn from an option, you know that the overall chances of winning are 50%. If your ticket number
is an odd number and die roll is also an odd number: you win Also, If your ticket number is an
even number and die roll is also an even number: you win Otherwise: you lose. So there is an
equal chance of that you won or lost the lottery. Remember that the computer knows whether
you won or lost, and, the color of the ball the computer draws from an option may give you more
information. Also, another common feature you may have already realized in the first Question, is
that across all the questions, seeing a red ball means that your chances of having won are either
equal to or higher than 50%, and seeing a black ball means that your chances are either equal to
or lower than 50%. How much your expectations of having won changes after you see a red or a
black ball depends on the contents of the boxes. Now, let’s move onto Question 2 and examine
the options it presents. Now, we will review Question 2. Question 2 asks you to choose between
these two options. These options are quite different than the simpler options you saw in Question
1. So, take a moment to inspect them carefully. If you pick Option 1 and you won the lottery, the
computer draws a ball from the box with 50 red and 50 black balls, and if you lost the lottery, it
draws a ball from the box with 100 black balls. If you pick Option 2 and you won the lottery, the
computer draws a ball from the box with 100 red balls; and if you lost, it draws a ball from the box
with 50 red and 50 black balls. How do these two options differ in the type of information they can
provide about whether you won or lost the lottery? Let’s look into Option 1 first. You can expect
to see a red ball from Option 1 25% of the time and a black ball 75% of the time. Because for
half the participants who won, the computer will draw a ball from the left box, getting a red ball

56



in half of those instances and a black ball in the other half of those instances. And for the other
half of participants who lost, the computer will draw from the right box, always getting a black
ball. So overall, you can expect to see a red ball 25% of the time and a black ball 75% of the time.
Now, let’s think about what it means if you see a red ball and what it means if you see a black
ball. If you see a red ball from Option 1, you learn right away that you won the lottery. Why?
Because red balls can only come from the left box. The computer draws from the left box only if it
determines that you won the lottery. How about if you see a black ball? Note that the black ball
could have come from (either) the left box or the right box. So, you cannot conclude you won or
lost for sure. However, note that there are twice as many black balls in the right box than in the
left box. So it is more likely to observe a black ball if you lost than it is to observe it if you won.
Therefore, seeing a black ball is basically getting news that your chances of losing are less than the
general 50% chance, albeit still uncertain. In fact, seeing a black ball from option 1 means that
the chances that your ticket won are 33%. We reviewed Option 1. Now, let’s look at Option 2.
You can expect to see a red ball from Option 2 75% of the time and a black ball 25% of the time,
because for half the participants who won, the computer draws a ball from the left box and all of
those instances, the color of the ball will be red. If you see a black ball from Option 2, it means
that you lost the lottery. You know this for sure, because the only way you can see a black ball is
if it comes from the right box and the computer only draws from that box if you lost. How about
if you see a red ball? Note that the red ball could have come from (either) the left box or the right
box. But there are twice as many red balls in the left box than in the right. So seeing a red ball is
a signal that your chances of winning are better than 50%, albeit still uncertain. In fact, seeing a
red ball from option 2 means that the chances that your ticket won are 67%. Question 2 asks you
to choose between these two options. These options are quite different than the simpler options
you saw in Question 1. So, take a moment to inspect them carefully. In Option 1 you are more
likely to see a black ball and in Option 2 you are more likely to see a red ball. In Option 1, Seeing
a black ball means that your chances of winning are 33%. Seeing a red ball means that you won for
sure. In comparison, in Option 2, seeing a black ball means that you lost for sure and seeing a red
ball means that your chances of winning are 67%. Please take a moment to think about the kind
of information these options offer and what kind of information you would like to get about your
chances of winning. Remember you will get this information at the end of Part 1, sit with it and
learn the outcome of die roll at the end of the study. Now, please move on to the comprehension
and choice questions by clicking the next button when it appears.

D.5. Video Links

Lottery and Information: http://tinyurl.com/infopref-general
Q1: http://tinyurl.com/infopref-q1
Q2: http://preview.tinyurl.com/infopref-q2
Q3: http://tinyurl.com/infopref-q3
Q4: http://tinyurl.com/infopref-q4
Q5: http://tinyurl.com/infopref-q5

Appendix E: Experimental Protocol, Robustness Study

In July 2015, 223 subjects participated in a real-choice study conducted at the [blinded for review]
Lab. This study presented only one pairwise comparison of information structure to each subject.
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It also elicited a monetary evaluation of utility differences between information structures. Each
participant is paid $7 for participating the hour-long experiment and could win $10 in the lottery,
receive a pen or a postcard, and earn up to $1 as a result of their choices and luck in the preference
elicitation mechanisms. The average earnings were $12.38.

When the subjects arrived at the lab, they received raffle tickets. The study had three parts.
Part 1 involved a choice between a pen and a postcard. Its main objective was to introduce
the subjects to the preference elicitation mechanism to be used in Part 2. In Part 2, subjects
participated in a lottery with the raffle ticket, and indicated preferences between two information
structures that could reveal certain amounts and types of information regarding the lottery outcome.
Questions in this part elicited the preference ranking among the two information structure options,
as well as the compensation the subject required in order to receive the option s/he did not prefer
instead of the option s/he preferred. Part 3 included hypothetical questions regarding risky choices.
Each part has its own detailed instructions, but subjects were given an overview of what they
involved in the initial instructions, as detailed below in E.1.

In Part 1, subjects completed a seemingly unrelated training session that approximately lasted
10 minutes and gave them experience with the willingness to accept protocol. They were given
two collegiate memorabilia to choose from: a pen and a postcard from the university they were
currently attending. They were told that they could keep the item of their choice. After they
indicated their choice, they were asked to indicate the strength of their preference for the item they
chose. Figures 10 and 11 display screen shots of these questions.

Next, they were presented with the option of receiving money for switching their choice. First,
they watched an instructional video explaining this option, as transcribed in E.2. We presented 10
consecutive statements of the following form: “For a compensation of x cents I would change my
choice,” where x varied from 1 to 50. They indicated ‘Yes’ or ‘No’ for each of these statements.
We informed them 1) that on the next page, they would see a random number between 1 and 10
generated by an independent web service (http://reporting.qualtrics.com/projects/ randomNum-
Gen.php), 2) that this number would determine the statement we carry out, and 3) about the
consequences of their choices. In particular, we explained that if they marked ‘No’ for a statement
that got chosen, they would get the option they preferred, but if they marked ‘Yes’, they would
be given the other option and the amount of money indicated in the statement. The statements
were ordered in an ascending order of x. All subjects only switched once from ‘No’ to ‘Yes’ , if
they switched at all. Figure 12 displays the screen shot of the willingness to switch elicitation page.
After a random statement was chosen, subjects were asked 1) what item they would be receiving
as a result, and 2) whether they regretted their decision. Subjects had to wait for everyone else to
be done with Part 1 before they proceeded to Part 2.

In the beginning of Part 2, subjects were asked to watch an instructional video that explained the
setup of Part 2. This instructional video outlined the details of the lottery, information revelation
time line and the task they face in Part 2 (transcription presented in E.3). The participants were
then asked to enter the last digit of the raffle ticket they received. The experimenter rolled a
10-sided die, and covered the outcome with a cup. S/he then provided a code for the subjects to
enter in the program, as in the main study, to indicate the die outcome to the program, without
letting the subject know.

The subjects saw one of the following five binary comparisons across five between-subject treat-
ments as described in Table ?? of the main text. They watched an instructional video outlining
the information structures. The transcription of the video introducing the binary choice in Treat-
ment A is included in E.4 as an example. After watching the video and answering questions that
checked their comprehension of the material presented, subjects made a choice between Option 1
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and Option 2, and indicated their preference strength. The information displayed on the screen
and the question style was identical to the main experiment, as depicted by Figure 5 and 6.

We then offered them the option to change their choice in exchange for some money. Similar
to the willingness to accept task they completed in Part 1, they indicated whether they would give
up their original choice and instead see a ball drawn from their unpreferred information structure
in exchange for x cents where x ranged from 1 to 50. Figure 13 displays the preamble to this
elicitation and Figure 14 shows the set of 10 questions. We then picked one statement randomly
and carried it out. Figure 15 displays the page informing the subject of the chosen question. If they
said ‘No,’ they saw a ball from the information structure of their choice. If they said ‘Yes,’ they saw
a ball from the other structure, and received x additional cents at the end of the experiment. After
seeing a ball, subjects were reminded of the posterior likelihood of having won the lottery. Figure
16 displays the page where the subjects received a signal from their information structure of choice.
Part 2 also asked the subjects to explain the reason why they preferred one information structure
over another, asked a comprehension question to check that they understood the implication of
their choice in the statement drawn at random, and also asked for some demographics information.

In Part 3, they indicated their choices between a gamble that paid $50 or nothing versus a sure
payment, when the risk was realized today versus in a week. They also wrote short essays regarding
the difference between motives and intentions behind an action. Part 3 took approximately 30
minutes for subjects to complete. At the end of the study, the die outcome was announced and the
holders of the winning tickets were paid an additional $10. All subjects were paid any additional
compensation resulting from the willingness to accept elicitations in Part 1 and 2 at this time, and
were given either the pen or the postcard to take home with them.

Only 190 passed the checks included in the study. We report the data from these subjects in
Table 5 of the main text. For completeness, Table 9 below presents the same data from al 223
subjects. None of our conclusions are subject to the omission of data from subjects who were not
paying attention or who were confused.

Table 9: Robustness Study

N
Choice Percentage Intensity Average MCTS
First p-value First Second p-value First Second p-value

T
re

at
m

en
ts A (1, 1) vs (.5, .5) 43 65% .033 8.32 6.93 .018 27.0 32.4 .174

B (1, .5) vs (.5, 1) 45 18% .000 6.38 7.24 .198 20.7 32.9 .037
C (.3, .9) vs (.9, .3) 47 68% .009 5.75 5.87 .444 20.2 22.8 .297
D (.9, .6) vs (.6, .9) 46 30% .006 6.21 6.81 .191 33.3 25.9 .088
E (.5, .5) vs (.5, .1) 42 12% .000 6.40 8.35 .016 35.3 37.0 .426

In parentheses we report the p-values from one-sided binomial test to evaluate the null hypothesis that choice
percentages are either larger or smaller than 50%, and p-values from one-sided t-tests to evaluate the ordering of
preference intensity and average MCTS across option 1 and option 2.

Experimental Materials

E.1. General Instructions

Welcome to our informational decision making session. Please read the instructions carefully. We
will ask comprehension questions in a little bit. You may have participated in different kinds of
studies across campus. The instructions we give in this study are accurate and reflect exactly
how the study will unfold. We will explain how the study is programmed, how the computer will
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determine the questions and information you will see and how you will get paid in accordance with
what actually will happen. In other words, there is no deception of any kind and you will be fully
informed of the workings of the study at all times.

The session will last 60 minutes. You will receive $7 for your participation. You will also get
a pen or a postcard and may earn an additional $10 as a result of luck. If you fail to follow the
instructions or disturb the flow of the study in any way, you will be asked to leave the study.

Please silence your phones and put your belongings under the table, and leave them alone during
the entire study. We need your full engagement; even when you are not actively participating in
the study, please wait patiently and refrain from using your cell phone, checking email, surfing the
internet, etc.

This is a silent study. Please do not make any noise, you will be asked to leave the study without
any compensation if you do. If you are having technical difficulties at any time, raise your hand
quietly and the experimenter will come to help. You are not allowed to ask questions about the
content of the study to the experimenter, please read and listen to the instructions very carefully to
avoid confusion. All information pertinent to the study is contained in the instructions. Therefore
it is of utmost importance that you follow the instructions carefully. At certain points in time, we
may also ask you basic facts about the study to make sure you are following what is going on.

In this session, you will participate in two different studies. In Study 1, we will ask you to
indicate your preference between the pen and the postcard and answer related questions. In Study
2, you will participate in a lottery with the raffle ticket you got when you arrived. If you win the
lottery, you will earn an additional $10. If you lose the lottery, you will not get any additional money.
Both studies will be explained in detail with video instructions. Your decisions and payments will
depend on your understanding of these instructions.

In both studies, we will be using an independent web service (http://reporting.qualtrics.com/
projects/randomNumGen.php) to randomly pick numbers between 1 and 10. These numbers will
be helpful in determining outcomes in uncertain events. Each number has an equal chance of being
picked for any given event. The numbers are drawn completely randomly and do not follow any
particular sequence.

All payments will be made in cash at the end of the study.

E.2. Willingness to Switch Elicitation: Transcription of video instructions

Thank you for indicating your choice among the pen and the postcard. Whether you get what
you chose, or the other item, will depend on your answers in the next task. The next task will
help us put a monetary value on the strength of your preference between the two options. You’ve
already indicated your strength of preference. Now, we will ask you a list of questions that will
translate the difference in your liking to how much we would have to compensate you in order to
give you the item you did not want to receive. You will see 10 questions, each of which will ask
you whether you would change your choice if we compensated you for the amount specified in the
question. You will answer by selecting yes or no. The stronger your preference for the item you
chose over the item you rejected, the more money we would need to pay you to give you the item
you did not want to receive rather than the item you chose. Let’s look at how these questions will
look like. On your screen you will see the following list. Question 1 asks whether you would change
your choice if we paid you 1 cent to do that. If you say no, you will get the item you preferred to
take with you at the end of the study today. If you say yes, you will receive 1 cent and instead
get the item you did not prefer. Question 2 increases the compensation to 5 cents and asks you
if you would switch for that amount. In this manner, questions keep increasing the compensation
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amount, until Question 10, which offers you 50 cents to change the item you will get at the end of
the study. Clearly, you may say No to all the questions if you would need more than 50 cents to
be OK with getting the item you rejected. Or you can say yes to all these questions if you don’t
care much about which item you get. Everyone’s preferences are different, so everyone will require
different amounts to change their choice. For example, if 15 cents is not enough compensation to
give up your choice, but you would be OK with getting your unwanted item if we paid you 20 cents
or more, your answers would look like this. Or instead, if 30 cents is not enough compensation to
give up your choice, but you would be OK with getting your unwanted item if we paid you 35 cents
or more, your answers would look like this. Clearly, if you switch from answering NO to answering
YES on this list of questions, you should only switch once. That will tell us which compensation
is too low for you, and which compensation is high enough. There are no right or wrong answers.
Please think about how much you like the item you chose versus the item you rejected. This task is
designed to elicit your true preferences. As such, we will randomly draw a number between 1 and
10 using the online random number generator. This will determine the question we will carry out.
For example, if the number comes up 6, we will look at Question 6. If you said No to that question,
you will keep the item you prefer. If you said Yes, you will let that item go and switch to the other
item, and receive the monetary compensation specified in Question 6. You should consider each
question independently and indicate your true preferences. If you say No when you would rather
take the money, or if you say Yes when you’d rather keep the item you prefer, you may feel regret
when we carry out your choice. So please think carefully and answer these questions according to
your own preferences. We show you the task one more time before you proceed. Think about what
compensation is too little for you to switch your choice, and what compensation would be enough.
Accordingly, click Yes or No for each question. Please raise your hand now if you had any technical
difficulties in hearing/reading these video instructions. Otherwise, click the next button.

E.3. Lottery and Information: Transcription of video instructions

You will participate in a lottery with the raffle ticket you were given. The chances of winning are
50%. If you win the lottery, you will get an additional $10. If you lose the lottery you will not get
any additional payment. We will determine whether you won or lost right after these instructions.
The experimenter will roll a 10-sided die and cover it with a cup. The die outcome can be 0, 1, 2,
3, 4, 5, 6, 7, 8, 9, each with equal chance. If the die outcome is even, and your ticket’s last digit
is even, it means that you won the lottery. If the die outcome is odd, and your ticket’s last digit
is odd, it also means that you won the lottery. Otherwise, it means that you lost the lottery. So,
you have a 50% chance of winning and 50% chance of losing. Note that the chance of winning and
losing is equal for everyone and does not depend on how many people are in the session. Multiple
people in the same session will win the lottery. Whether you win or lose is entirely determined by
your ticket number and the die roll. There is an important detail about how we will reveal the
outcome of the die roll. When the experimenter rolls the die, she or he will hide the outcome with
a cup placed over the die until the end of the study. The experimenter will know the outcome at
that time, but the cup will only be removed at the end of the study. So you will not learn about
the outcome of the die roll until the very end of the study. So even though you know your ticket
number, since you don’t know the die roll, you will not know whether you won or lost the lottery,
even though it is determined already. At the end of the study, the experimenter will remove the cup
and everyone will be able to see the die roll. Even though you will not learn about the outcome of
the die roll right away, the experimenter will give you a code to enter, in order to let your computers
know whether the die roll was even or odd. For example, say that we programmed the survey such
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