RULES AND COMMITMENT IN COMMUNICATION

Guillaume Fréchette Alessandro Lizzeri

Jacopo Perego

New York University

October 2016

We revisit a classic question in economics from a new perspective:

— How "much" information can be transferred under direct communication?

What we do:

- A framework nesting existing models under the same umbrella.
- With this framework, we test comparative statics across these models.

We produce comparative statics along two principal dimensions:

- 1. **Rules**: What can the sender say?
- 2. Commitment: Can sender write enforceable contracts?

Focus on a minimal set-up:

- Binary state: Red and Blue.
- Two parties (sender, receiver) with conflicting interests.
- Sender has information, Receiver has ability to act.
- Three messages: red, blue and no message.

Rules: What can the sender say?

We explore two extremes:

- Unverifiable messages.

There are no rules governing which messages the sender can send.

- Verifiable messages.

When state Red: Sender can send red or no message.


When state Blue: Sender can send blue or no message.

Stage 1: Commitment.

- Sender selects her commitment strategy.
- This strategy will be revealed to the receiver

Stage 2: Revision.

- Sender learns color of the ball.
- She can revise her previous choice.
- Revision is not revealed to the receiver.

Stage 3: Guess.

- Receiver makes decisions as a function of message.
- The message comes from Commitment Stage with probability ρ .

This framework accommodates existing models as special cases.

Cheap Talk. Crawford and Sobel (1982)

Unverifiable and no commitment.

Disclosure. Grossman (1981), Milgrom (1981), Jovanovic (1982), Okuno-Fujiwara et al (1990)

Verifiable and no commitment.

Bayesian Persuasion. Kameniza and Gentkow (2011)

Unverifiable and full commitment.

Variations around a common basic structure, different predictions.

Exploit this framework to:

- Provide novel comparative statics: beyond preference alignment.
- Interaction of Rules and Commitment on strategic information transmission.
- Offer a broader perspective on these communication models.
- Test Bayesian persuasion.

Our questions:

- 1. Are senders able to exploit commitment?
- 2. Do receivers understand messages generated by commitment?
- 3. Do rules generate more responsiveness? (Policy: voluntary disclosure)

Preliminary results:

- 1. Qualitatively, commitment affects equilibrium informativeness in ways that are consistent with theory.
- 2. Yet, significant quantitative departures from the theory.
- 3. Commitment seems to work better when there are no rules.

 Hiding *good news* is harder than the lying about *bad ones*.

- Binary state $\Theta = \{R, B\}$. Common prior belief.
- Receiver actions $A = \Theta$.
- Receiver plays a guessing game: $u(\theta,a):=\mathbf{1}(a=\theta).$ Wins if she guesses right. Loses otherwise.
- Sender's utility: v(a) := 1(a = R). Wins if Receivers guesses red.
- Set of messages M.

Stage 1:

Sender chooses a **commitment** strategy: $\pi_C: \Theta \to \Delta(M)$.

Stage 2: With probability $1 - \rho$, she enters an **revision stage**:

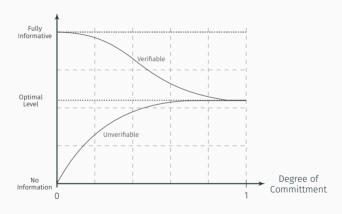
Learns the realization of θ .

Chooses a revision strategy: $\pi_R(\theta) \in \Delta(M)$ conditional on θ .

Stage 3:

Receiver guesses. $a: M \to \Delta(A)$.

Parameter ρ captures the extent of commitment.


Interacting Rules and Commitment:

Proposition.

- When messages are *verifiable*, commitment decreases informativeness.
- When messages are unverifiable, commitment increases informativeness.

When Θ binary,

– Informativeness converges to the same point as $ho \to$ 1, regardless of rules.

How "much" information can be transferred in equilibrium?

1. Cheap Talk.

No information transmitted: Babbling.

2. Disclosure.

All information transmitted: Unraveling.

3. Bayesian Persuasion.

Some information is transmitted: Lie, but keep it credible.

Setup:

- Urn has three balls: two blue and one red.
- Receiver wins \$2 if guesses correctly.
- Sender wins \$2 if Receivers says Red.
- Up to three messages: red, blue, no message.
- Rules:
 - Verifiable: truth or no message.
 - Unverifiable: no constraints.

Setup:

- Urn has three balls: two blue and one red.
- Receiver wins \$2 if guesses correctly.
- Sender wins \$2 if Receivers says Red.
- Up to three messages: red, blue, no message.
- Rules:
 - Verifiable: truth or no message.
 - Unverifiable: no constraints.

Match 1 of 2

You are the Sende

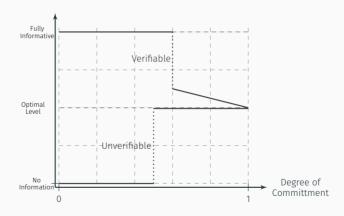
Communication Stage

Here you choose your COMMUNICATION PLAN.
After you click Confirm, we will communicate the plan you chose to the Receiver.

If the ball is RED:

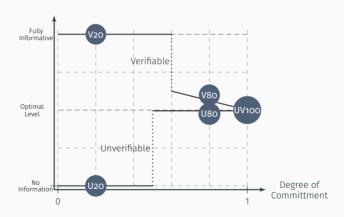
Send Message with probability:

Red 60 %


Blue 30 %

No Message 20 %

CONFIRM


Treatments (2x3):

Rules: Verifiable vs Unverifiable.

Commitment: $\rho = \{20, 80, 100\}.$

Labeling:

	Commitment					
Rules	V20	V8o	V100			
Rutes	U20	U8o	U100			

EQUILIBRIUM BEHAVIOR

	Sender					Rec	eiver			
		Со	mmitme	nt		Re	vision		Guessing	
Treat.	Ball		Mess	age	Ball		Messag	ge	Mes.	Guess
		red	blue	no		red	blue	no		
V20	R B	1	x	1 — x	R B	1	x	1 - x	red blue no	red blue blue
V80	R B	0	<u>3</u>	1 1 4	R B	1	0	0	red blue no	red blue red
V100	R B	0	1/2	1 1 2					red blue no	red blue red
U20	R B	$x \\ x$	$y \\ y$	$\begin{array}{c} 1-x-y \\ 1-x-y \end{array}$	R B	1	0	0	red blue no	blue blue blue
U80	R B	1 3 8	0 <u>5</u> 8	0	R B	1	0	0	red blue no	red blue blue
U100	R B	1 1 2	0 1 2	0					red blue no	red blue blue

Sender's equilibrium behavior in two extreme cases:

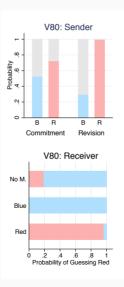
U100						
messages						
	r b n					
Ball	R	100%	0	0		
Datt	В	50%	50%	0		

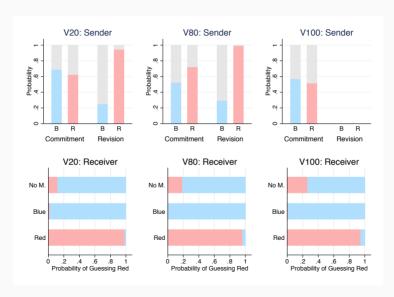
V100								
messages								
		r b n						
Ball	R	0	0	100%				
Datt	В	0	50%	50%				

Intuition and main tensions:

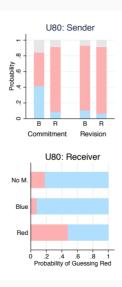
- **U100**. Lie as much as you can, while keeping it credible.
- V100. Never release good news: "No news, good news."

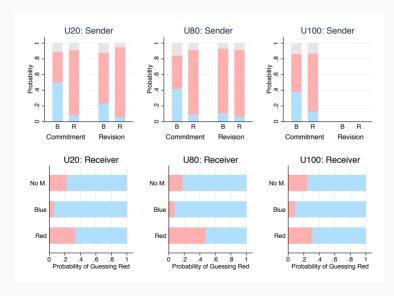
Effectively redefine a language.


Implementation:


- Two unpaid practice rounds.
- 25 periods played for money in fixed roles.
- Random rematching between periods.

General Information:


- Six treatments, three to four sessions per treatment.
- 336 subjects (\approx 16 per session; between 12 and 24).
- Average earnings: \$24 (including \$10 show up fee).
- Average duration: 100 minutes.



BEHAVIOR UNDER UNVERIFIABLE MESSAGES

BEHAVIOR UNDER UNVERIFIABLE MESSAGES

How to measure equilibrium informativeness?

Pearson correlation index ϕ between Ball and Guess.

(Definition ⊳)

Intuition:

If no information, $\phi = 0$. Receiver always says blue.

If full information, $\phi =$ 1. Receiver perfectly matches the state.

We focus attention on data from last 10 rounds.

INFORMATIVENESS: CORRELATION

Theory:

	Commitment (ρ)				
	20%	80%	100%		
Verifiable	1	0.57	0.50		
Unverifiable	0	0.50	0.50		

Data:

${\sf Commitment}\;(\rho)$					
20%	80%	100%			

Verifiable

Unverifiable

INFORMATIVENESS: CORRELATION

Theory:

	${\sf Commitment}\;(\rho)$				
	20%	80%	100%		
Verifiable	1	0.57	0.50		
Unverifiable	0	0.50	0.50		

Data:

	${\sf Commitment}\ (\rho)$					
	20%		80%		100%	
Verifiable	0.83	\approx	0.78	>	0.68	
	\vee		\vee		V	
Unverifiable	0.10	<	0.20	\approx	0.22	

INFORMATIVENESS: CORRELATION

Verifiable:

Commitment decreases correlation, although much less then it should.

Unverifiable:

Commitment increases correlation, although much less then it should.

Verifiable:

Commitment decreases correlation, although much less then it should.

Unverifiable:

Commitment increases correlation, although much less then it should.

This measure takes into account at the same time:

- 1. Senders' behavior.
- 2. Receivers' behavior.
- 3. Inherent randomness of the experiment.

It cumulates mistakes from all sides.

Who is getting it wrong and why?

CORRELATION WITH BAYESIAN RECEIVERS

Theory:

	${\sf Commitment}\;(\rho)$				
	20%	80%	100%		
Verifiable	1	0.57	0.50		
Unverifiable	0	0.50	0.50		

Data + Bayesian Rec:

	Commitment (ρ)					
	20%		80%		100%	
Verifiable	0.92	>	0.84	\approx	0.79	
	\vee		\vee		V	
Unverifiable	0.00	<	0.33	\approx	0.30	

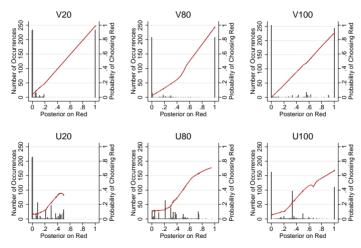
A general improvement in point predictions.

Observation 1.

Senders take partial advantage of commitment in the directions predicted by the theory.

Most interesting deviation:

- Even with rational receivers: U100 $\ll V$ 100


How to establish rationality of a receiver?

A Bayesian receiver:

- 1. Gets a message m.
- 2. Computes the **posterior** belief $\mu(R|m) \in [0,1]$.
- 3. Guess Red if and only if $\mu(R|m) \geq \frac{1}{2}$.

A weak test for rationality:

- Label m of the message doesn't matter.
- The likelihood of guessing red is increasing $\mu(R|m)$.

Bars indicate the number of messages inducing this posteriors on the ball being RED (left axis). The red line indicates the probability that such a message yields a red guess (right axis).

Overall, receivers respond to incentives.

Observation 2.

Response function is increasing in posterior beliefs.

Most interesting deviation:

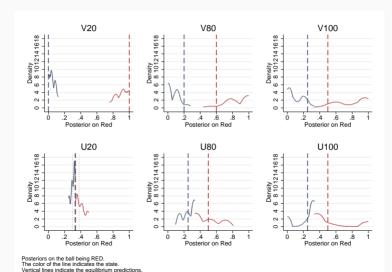
- Receivers are overly skeptical in U-treatments.
- Rules (partially) override skepticism.

(Pareto improvement)

Still, Obs 2 \Rightarrow let's go beyond correlation index.

What posteriors do senders attempt to induce?

Chain of events: $\theta \Rightarrow m \Rightarrow \mu(R|r)$


Goal:

Extracting informativeness from induced posteriors.

Much cleaner measure than correlation.

We use:

Conditional posterior belief variance.

	Commitment (ρ)						
	20	20%		80%		100%	
Verifiable	0.86	(1.00)	0.78	(0.40)	0.69	(0.25)	
	B 0.05	R 0.91	B 0.07	R 0.85	B 0.10	R 0.80	
Unverifiable	0.11	(0.00)	0.23	(0.25)	0.30	(0.25)	
	B 0.30	R 0.40	B 0.26	R 0.49	B 0.23	R 0.53	

Informativeness: Random Posteriors

We confirm that senders understand how to exploit commitment.

Also, this shows under a different light that:

Observation 3.

The point prediction of V100 is further off than U100.

REDEFINING A LANGUAGE (THEORY)

What is going on in V100?

Full commitment, no lies.

Let's review equilibrium behavior in **U100** and **V100**.

U100					
	messages				
		r	b	n	
Sates	R B	100% 50%	0 50%	0	

V100					
		messages			
		r	b	n	
Sates	R B	0	0 50%	100% 50%	

REDEFINING A LANGUAGE (DATA)

What is going on in V100?

Full commitment, no lies.

Let's see the aggregate data in U100 and V100.

U100				
	messages			
		r	b	n
Sates	R B	74% 44%	12% 39%	14% 17%

V100					
		messages			
		r	b	n	
Sates	R B	51% 0	o 58%	<mark>49%</mark> 42%	

REDEFINING A LANGUAGE

What's going on?

- In V100, senders have to strategically hide "good news."
- In U100, senders have to strategically lie about "bad news."

Overall, senders get the former to a much lesser extent than the latter.

Local experimentation / Naive learning doesn't help them.

conclusions

CONCLUSIONS

We study the role of rules and commitment on informativeness.

- Present a simple framework nesting known models as special cases.
- We perform comparative statics across models.
- Look at communication models from a different perspective.

Preliminary Results:

- Commitment affects informativeness as predicted.
- Yet, substantial deviations in levels.
- Hiding good news is harder than the lying about bad ones.
- Rules matter more than commitment.

appendix

Pearson Correlation index btw Ball and Guess. $\phi := \frac{n_{Rr}n_{Bb} - n_{Rb}n_{Br}}{\sqrt{n_Rn_Bn_rn_b}}.$

$$\begin{vmatrix} a=r & a=b \\ \theta=R & n_{Rr} & n_{Rb} & n_{R} \\ \theta=B & n_{Br} & n_{Bb} & n_{B} \\ \hline & n_{r} & n_{b} & \\ \hline \end{vmatrix}$$

where

$$n_{\theta,a} = \sum_{m \in M} \hat{\pi}(m|\theta)\sigma(a|m)$$

and

$$\hat{\pi}(m|\theta) := \rho \pi_C(m|\theta) + (1-\rho)\pi_U(m|\theta)$$

